Introduction to Vision and Robotics: Computer Vision

Image segmentation

Vittorio Ferrari

Many slides in this lecture are due to other authors; they are credited on the bottom right

Topics of This Lecture

- Problem definition and goals
- Greylevel segmentation by thresholding
- Background removal
- Canny edge detection
- Segmentation into multiple regions with mean-shift

Image Segmentation

• Goal: identify groups of pixels that go together

Slide credit: Steve Seitz, Kristen Grauman

The Goals of Segmentation

• Separate image into objects

Slide credit: Svetlana Lazebnik

Topics of This Lecture

- Problem definition and goals
- Greylevel segmentation by thresholding
- Background removal
- Canny edge detection
- Segmentation into multiple regions with mean-shift

Isolating flat parts

Isolate parts, then characterise later

Assume

- Dark part
- Light background
- Reasonably uniform illumination -> distinguishable parts

Given this image, how might we label pixels as object and background?

Thresholding Introduction

Key technique: thresholding Assume pixel values are separable

Part and typical distribution

Spread: not quite uniform illumination + part color variations + sensor noise

Thresholding

Thresholding: central technique

for row = 1 : height
for col = 1 : width
if value(row,col) < ThreshHigh % inside high bnd
% & value(row,col) > ThreshLow % optional low bnd
output(row,col) = 1;
else
output(row,col) = 0;
end

Threshold Selection

Exploit bimodal distribution

- Distributions broad and some overlap -> misclassified pixels
- Shadows dark so might be classified with object
- Distribution has more than 2 peaks

So: smooth histogram to improve shape for selection

Convolution

General purpose image (and signal) processing function

Computed by a weighted sum of image data and a fixed mask

Linear operator: $conv(a^*B,C) = a^*conv(B,C)$

Used in different processes: noise removal, smoothing, feature detection, differentiation, ...

Convolution in 1D $Output(x) = \sum_{i=-N}^{N} weight(i) * input(x - i)$

Input:

Gaussian Mask and Output:

Derivative of Gaussian Mask and Output:

Histogram Smoothing for threshold selection

Histogram Smoothing (in findthresh.m) Convolve with a Gaussian smoothing window

filterlen = 50; % filter length
thefilter = gausswin(filterlen,sizeparam); % size=4
thefilter = thefilter/sum(thefilter); % unit norm
tmp2=conv(thefilter,thehist); % makes longer output
% select corresponding portion
offset = floor((filterlen+1)/2);
tmp1=tmp2(offset:len+offset-1);

SMOOTHED HISTOGRAM

FILTER SHAPE

Threshold Selection

Assume 2 big peaks, brighter background is higher:

- 1. Find biggest peak (background)
- 2. Find next biggest peak in darker direction
- 3. Find lowest point in trough between peaks

Peak Pick Code

Omit special cases for ends of array and closing 'end's.

```
peak = find(tmp1 == max(tmp1)); % find largest peak
```

```
% find highest peak to left
xmaxl = -1;
for i = 2 : peak-1
    if tmp1(i-1) < tmp1(i) & tmp1(i) >= tmp1(i+1) ...
    & tmp1(i)>xmaxl
        xmaxl = tmp1(i);
        pkl = i;
```

```
% find deepest valley between peaks
xminl = max(tmp1)+1;
for i = pkl+1 : peak-1
    if tmp1(i-1) > tmp1(i) & tmp1(i) <= tmp1(i+1) ...
    & tmp1(i)<xminl
        xminl = tmp1(i);
        thresh = i;</pre>
```

Adaptive Thresholding

What if varying and unknown background? Can select threshold locally

At each pixel, use a different threshold calculated from an NxN window (N=100) $\,$

Use: threshold = mean(window) - Constant (eg. 12)

Image with intensity gradient

Histogram

Adaptive Thresholding Code

```
N = 100;
[H,W] = size(inimage);
outimage = zeros(H,W);
N2 = floor(N/2);
for i = 1 + N2 : H - N2
  for j = 1 + N2 : W - N2
    % extract subimage
    subimage = inimage(i-N2:i+N2,j-N2:j+N2);
    threshold = mean(mean(subimage)) - 12;
    if inimage(i,j) < threshold
     outimage(i,j) = 1;
    else
     outimage(i,j) = 0;
```

end end

Adaptive Thresholding Results

Selection has included shadow at bottom and right

Background Removal

If known but spatially varying illumination

Reflectance: percentage of input illumination reflected. A function of the light source, viewer and surface colors and positions.

Recall:

 $background(r,c) = illumination(r,c)*bg_reflectance(r,c)$ $object(r,c) = illumination(r,c)*obj_reflectance(r,c)$

Divide to remove illumination: unknown(r,c)/background(r,c) = 1 if unknown = background <<1 if unknown = dark object Pick threshold in [0,1] e.g. 0.6

Background removal results 1

Part

Background

Background removal results 2

Background removal results 3

Has also included shadow below and right.

Colour background removal

Before

After

change=open(2,coloror(thresh(35,abs(Before-After))))
(Use HSI instead of RGB to cope with illumination
changes?)

Colour background removal

Red change

Green change

ORed change

Opened

Coping with varying lighting

Use normalised RGB:

$$(r,g,b) \rightarrow \left(\frac{r}{r+g+b}, \frac{g}{r+g+b}, \frac{b}{r+g+b}\right)$$

Double illumination still gives same normalised RGB:

$$\left(\frac{r}{r+g+b}, \frac{g}{r+g+b}, \frac{b}{r+g+b}\right) = \left(\frac{2r}{2r+2g+2b}, \frac{2g}{2r+2g+2b}, \frac{2b}{2r+2g+2b}\right)$$

Normalised RGB Example

Original

Normalised

Reduces shadow effects, too.

Topics of This Lecture

- Problem definition and goals
- Greylevel segmentation by thresholding
- Background removal
- Canny edge detection
- Segmentation into multiple regions with mean-shift

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Edges are caused by a variety of factors:

Characterizing edges

• An edge is a place of rapid change in the image intensity function

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

How to implement the above? \rightarrow convolutions!

Defining 2D convolutions

• Let *f* be the image and *g* be the kernel. The output of convolving *f* with *g* is denoted *f* * *g*.

$$(f * g)[m, n] = \sum_{k, l} f[m - k, n - l]g[k, l]$$

• MATLAB functions: conv2, filter2, imfilter

Source: F. Durand

Key properties

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Partial derivatives of an image

Which shows changes with respect to x?

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ;
 $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

 Sobel:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

 Roberts:
 $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Image gradient

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

- The gradient points in the direction of most rapid increase in intensity
 - How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

The *edge strength* is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f)$

Source: S. Seitz

**g*)

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Now in 2D: Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

|--|

5 x 5,
$$\sigma$$
 = 1

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Source: C. Rasmussen

Now in 2D: Gaussian Kernel

• Standard deviation σ : determines extent of smoothing

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians → enable efficient implementations

Derivative of Gaussian filter in 2D

Which one finds horizontal/vertical edges?

Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast

original image

Slide credit: Steve Seitz

norm of the gradient

thresholding

thresholding

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

requires checking interpolated pixels p and r

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Use a high threshold to start edge curves, and a low threshold to continue them.

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Recap: Canny edge detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge(image, `canny');

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Topics of This Lecture

- Problem definition and goals
- Greylevel segmentation by thresholding
- Background removal
- Canny edge detection
- Segmentation into multiple regions with mean-shift

Mean-Shift Segmentation

 An advanced and versatile technique for clusteringbased segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space Analysis</u>, PAMI 2002.

Slide credit: Svetlana Lazebnik

Finding Modes in a Histogram

- How many modes are there?
 - Mode = local maximum of a given distribution
 - Easy to see, hard to compute

Slide adapted from Steve Seitz

Mean-Shift Algorithm

• Iterative Mode Search

- 1. Initialize random seed center and window W
- 2. Calculate center of gravity (the "mean") of W:
- 3. Shift the search window to the mean
- 4. Repeat steps 2+3 until convergence

Slide adapted from Steve Seitz

 $\sum_{x \in W} x H(x)$

Real Modality Analysis

The **blue** data points were traversed by the windows towards the mode.

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean-Shift Clustering/Segmentation

- Choose features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Start mean-shift from each window until convergence
- Merge windows that end up near the same "peak" or mode

Slide adapted from Svetlana Lazebnik

Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html Slide credit: Svetlana Lazebnik

More Results

Summary Mean-Shift

- <u>Pros</u>
 - General, application-independent tool
 - Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
 - Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means) == scale of clustering
 - Finds variable number of modes given the same h
 - Robust to outliers

<u>Cons</u>

- Output depends on window size h
- Window size (bandwidth) selection is not trivial
- Computationally rather expensive
- > Does not scale well with dimension of feature space

Slide adapted from Svetlana Lazebnik