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Many slides in this lecture are due to other authors; they are credited on the bottom right 
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Topics of This Lecture 

•  Problem definition and goals 

 

•  Greylevel segmentation by thresholding 
 

•  Background removal 

 

•  Canny edge detection 

 

•  Segmentation into multiple regions with mean-shift 
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Image Segmentation 

•  Goal: identify groups of pixels that go together 

Slide credit: Steve Seitz, Kristen Grauman 
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The Goals of Segmentation 

•  Separate image into objects 

Image Human segmentation 

Slide credit: Svetlana Lazebnik 
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Topics of This Lecture 

•  Problem definition and goals 

•  Greylevel segmentation by thresholding 

•  Background removal 

•  Canny edge detection 

•  Segmentation into multiple regions with mean-shift 



Isolating flat parts

Isolate parts, then characterise later

Assume

• Dark part

• Light background

• Reasonably uniform illumination − > distinguishable

parts

Slide credit: Bob Fisher



Given this image, how might we
label pixels as object and
background?

Slide credit: Bob Fisher



Thresholding Introduction

Key technique: thresholding

Assume pixel values are separable

Part and typical distribution

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Spread: not quite uniform illumination + part color

variations + sensor noise

Slide credit: Bob Fisher



Thresholding

Thresholding: central technique

for row = 1 : height

for col = 1 : width

if value(row,col) < ThreshHigh % inside high bnd

% & value(row,col) > ThreshLow % optional low bnd

output(row,col) = 1;

else

output(row,col) = 0;

end

Slide credit: Bob Fisher
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Slide credit: Bob Fisher



Threshold Selection

Exploit bimodal distribution

0 50 100 150 200 250
0

1000
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7000

8000

9000

10000

But:

• Distributions broad and some overlap − >

misclassified pixels

• Shadows dark so might be classified with object

• Distribution has more than 2 peaks

So: smooth histogram to improve shape for selection

Slide credit: Bob Fisher



Convolution

General purpose image (and signal) processing function

Computed by a weighted sum of image data and a fixed

mask

Linear operator: conv(a*B,C) = a*conv(B,C)

Used in different processes: noise removal, smoothing,

feature detection, differentiation, ...

Slide credit: Bob Fisher



Convolution in 1D

Output(x) =
N∑

i=−N

weight(i) ∗ input(x − i)

Input: 0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

1.5

2

Gaussian Mask and Output:
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0.04

0.06
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−0.5
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0.5

1
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2

Derivative of Gaussian Mask and Output:

0 5 10 15 20 25 30 35 40 45
−0.1

0

0.1

0 50 100 150 200 250 300

0

Slide credit: Bob Fisher



Histogram Smoothing for

threshold selection

Histogram Smoothing (in findthresh.m)

Convolve with a Gaussian smoothing window

filterlen = 50; % filter length

thefilter = gausswin(filterlen,sizeparam); % size=4

thefilter = thefilter/sum(thefilter); % unit norm

tmp2=conv(thefilter,thehist); % makes longer output

% select corresponding portion

offset = floor((filterlen+1)/2);

tmp1=tmp2(offset:len+offset-1);

Slide credit: Bob Fisher
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Slide credit: Bob Fisher



Threshold Selection

Assume 2 big peaks, brighter background is higher:

1. Find biggest peak (background)

2. Find next biggest peak in darker direction

3. Find lowest point in trough between peaks

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

1

2

3

Slide credit: Bob Fisher



Peak Pick Code

Omit special cases for ends of array and closing ‘end’s.

peak = find(tmp1 == max(tmp1)); % find largest peak

% find highest peak to left

xmaxl = -1;

for i = 2 : peak-1

if tmp1(i-1) < tmp1(i) & tmp1(i) >= tmp1(i+1) ...

& tmp1(i)>xmaxl

xmaxl = tmp1(i);

pkl = i;

Slide credit: Bob Fisher



% find deepest valley between peaks

xminl = max(tmp1)+1;

for i = pkl+1 : peak-1

if tmp1(i-1) > tmp1(i) & tmp1(i) <= tmp1(i+1) ...

& tmp1(i)<xminl

xminl = tmp1(i);

thresh = i;

Slide credit: Bob Fisher



Adaptive Thresholding

What if varying and unknown background? Can select

threshold locally

At each pixel, use a different threshold calculated from

an NxN window (N=100)

Use: threshold = mean(window) - Constant (eg. 12)

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

16000

Image with intensity gradient Histogram

Slide credit: Bob Fisher



Adaptive Thresholding Code

N = 100;

[H,W] = size(inimage);

outimage = zeros(H,W);

N2 = floor(N/2);

for i = 1+N2 : H-N2

for j = 1+N2 : W-N2

% extract subimage

subimage = inimage(i-N2:i+N2,j-N2:j+N2);

threshold = mean(mean(subimage)) - 12;

if inimage(i,j) < threshold

outimage(i,j) = 1;

else

outimage(i,j) = 0;

Slide credit: Bob Fisher



end

end

end

Slide credit: Bob Fisher



Adaptive Thresholding Results

Selection has included shadow at bottom and right

Slide credit: Bob Fisher



Background Removal

If known but spatially varying illumination

Reflectance: percentage of input illumination reflected. A

function of the light source, viewer and surface colors and

positions.

Recall:

background(r,c) = illumination(r,c)*bg reflectance(r,c)

object(r,c) = illumination(r,c)*obj reflectance(r,c)

Slide credit: Bob Fisher



Divide to remove illumination:

unknown(r,c)/background(r,c) =

1 if unknown = background

<<1 if unknown = dark object

Pick threshold in [0,1] e.g. 0.6

Slide credit: Bob Fisher



Background removal results 1

Part Background

Slide credit: Bob Fisher



Background removal results 2
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Raw histogram ratio histogram

Slide credit: Bob Fisher



Background removal results 3

Has also included shadow below and right.

Slide credit: Bob Fisher



Colour background removal

Before After

change=open(2,coloror(thresh(35,abs(Before-After))))

(Use HSI instead of RGB to cope with illumination

changes?)

Slide credit: Bob Fisher



Colour background removal

Red change Green change

ORed change Opened

Slide credit: Bob Fisher



Coping with varying lighting

Use normalised RGB:

(r, g, b) → (
r

r + g + b
,

g

r + g + b
,

b

r + g + b
)

Double illumination still gives same normalised RGB:

(
r

r + g + b
,

g

r + g + b
,

b

r + g + b
)

= (
2r

2r + 2g + 2b
,

2g

2r + 2g + 2b
,

2b

2r + 2g + 2b
)

Slide credit: Bob Fisher



Normalised RGB Example

Original Normalised

Reduces shadow effects, too.

Slide credit: Bob Fisher
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Topics of This Lecture 

•  Problem definition and goals 

•  Greylevel segmentation by thresholding 

•  Background removal 

•  Canny edge detection 

•  Segmentation into multiple regions with mean-shift 



Edge detection 

•  Goal:  Identify sudden 

changes (discontinuities) in 

an image 
•  Intuitively, most semantic and shape 

information from the image can be 

encoded in the edges 

•  More compact than pixels 

 

•  Ideal: artist’s line drawing 

(but artist is also using 

object-level knowledge) 

Source: D. Lowe 



Origin of edges 

Edges are caused by a variety of factors: 

depth discontinuity 

surface color discontinuity 

illumination discontinuity 

surface normal discontinuity 

Source: Steve Seitz 



Characterizing edges 

•  An edge is a place of rapid change in the 

image intensity function 

image 
intensity function 

(along horizontal scanline) first derivative 

edges correspond to 
extrema of derivative 



Derivatives with convolution 

For 2D function f(x,y), the partial derivative is: 

 

 

 
 

For discrete data, we can approximate using finite 

differences: 

 

 

 

How to implement the above? ! convolutions! 
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Source: K. Grauman 



Defining 2D convolutions 

∑ −−=∗
lk

lkglnkmfnmgf
,

],[],[],)[(

f 

•  Let f be the image and g be the kernel. The 

output of convolving f with g is denoted f * g. 

Source: F. Durand 

•    MATLAB functions: conv2, filter2, imfilter 

Convention:  
kernel is “flipped” 



Key properties 

•  Linearity: filter(f1 + f2) = filter(f1) + filter(f2) 

•  Shift invariance: same behavior regardless of 

pixel location: filter(shift(f)) = shift(filter(f)) 

•  Theoretical result: any linear shift-invariant 

operator can be represented as a convolution 



    Partial derivatives of an image 

Which shows changes with respect to x? 

-1     

1 

1     

-1 
or -1    1 

x

yxf
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y
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∂
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Finite difference filters 

Other approximations of derivative filters exist: 

Source: K. Grauman 



The gradient points in the direction of most rapid increase 
in intensity 

 

 

 

Image gradient 

The gradient of an image:  

 

 

  

The gradient direction is given by 

Source: Steve Seitz 

The edge strength is given by the gradient magnitude 

•  How does this direction relate to the direction of the edge? 



Effects of noise 

Consider a single row or column of the image 
•  Plotting intensity as a function of position gives a signal 

Where is the edge? 
Source: S. Seitz 



Solution: smooth first 

•  To find edges, look for peaks in )( gf
dx

d
∗

f 

g 

f * g 

)( gf
dx

d
∗

Source: S. Seitz 



•  Differentiation is convolution, and convolution 

is associative: 

 

•  This saves us one operation: 

g
dx

d
fgf

dx

d
∗=∗ )(

Derivative theorem of convolution 

g
dx

d
f ∗

f 

g
dx

d

Source: S. Seitz 



Now in 2D: Gaussian Kernel 

•  Constant factor at front makes volume sum to 1 (can be 
ignored when computing the filter values, as we should 

renormalize weights to sum to 1 in any case) 

0.003   0.013   0.022   0.013   0.003 

0.013   0.059   0.097   0.059   0.013 

0.022   0.097   0.159   0.097   0.022 

0.013   0.059   0.097   0.059   0.013 

0.003   0.013   0.022   0.013   0.003 

5 x 5, σ = 1 

Source: C. Rasmussen  



Now in 2D: Gaussian Kernel 

•  Standard deviation σ: determines extent of smoothing 

Source: K. Grauman 

σ = 2 with 30 x 30 

kernel 
σ = 5 with 30 x 30 

kernel 



Gaussian filters 

•  Remove “high-frequency” components from 

the image (low-pass filter) 

•  Convolution with self is another Gaussian 
•  So can smooth with small-σ kernel, repeat, and get same 

result as larger-σ kernel would have 

•  Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev.  

•  Separable kernel 
•  Factors into product of two 1D Gaussians ! enable efficient 

implementations 

Source: K. Grauman 

2σ



Derivative of Gaussian filter in 2D 

Which one finds horizontal/vertical edges? 

x-direction y-direction 



Review: Smoothing vs. derivative filters 

Smoothing filters 
•  Gaussian: remove “high-frequency” components;  

“low-pass” filter 

•  Can the values of a smoothing filter be negative? 

•  What should the values sum to? 

–  One: constant regions are not affected by the filter 

 
 

 

Derivative filters 
•  Derivatives of Gaussian 

•  Can the values of a derivative filter be negative? 

•  What should the values sum to?  

–  Zero: no response in constant regions 

•  High absolute value at points of high contrast 



The Canny edge detector 

original image 

Slide credit: Steve Seitz 



The Canny edge detector 

norm of the gradient 



The Canny edge detector 

thresholding 



The Canny edge detector 

thresholding 

How to turn 
these thick 

regions of 

the gradient 

into curves? 



Non-maximum suppression 

Check if pixel is local maximum along gradient 

direction, select single max across width of 

the edge 
•  requires checking interpolated pixels p and r 



The Canny edge detector 

thinning 

(non-maximum suppression) 

Problem: 
pixels along 

this edge 

didn’t 

survive the 

thresholding 



Hysteresis thresholding 

Use a high threshold to start edge curves, and a 

low threshold to continue them. 

Source: Steve Seitz 



Hysteresis thresholding 

original image 

high threshold 

(strong edges) 

low threshold 

(weak edges) 

hysteresis threshold 

Source: L. Fei-Fei 



Recap: Canny edge detector 

1.  Filter image with derivative of Gaussian  

2.  Find magnitude and orientation of gradient 

3.  Non-maximum suppression: 

•  Thin wide “ridges” down to single pixel width 

4.  Linking and thresholding (hysteresis): 

•  Define two thresholds: low and high 

•  Use the high threshold to start edge curves and 

the low threshold to continue them 
 

MATLAB:   edge(image, ‘canny’); 

J. Canny, A Computational Approach To Edge Detection, IEEE 

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.  
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Topics of This Lecture 

•  Problem definition and goals 

•  Greylevel segmentation by thresholding 

•  Background removal 

•  Canny edge detection 

•  Segmentation into multiple regions with mean-shift 
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Mean-Shift Segmentation 

•  An advanced and versatile technique for clustering-
based segmentation 

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html 

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, 
PAMI 2002.  

Slide credit: Svetlana Lazebnik 
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Finding Modes in a Histogram 

•  How many modes are there? 
"  Mode = local maximum of a given distribution 

"  Easy to see, hard to compute 

Slide adapted from Steve Seitz 
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Mean-Shift Algorithm 

•  Iterative Mode Search 
1.   Initialize random seed center and window W 

2.   Calculate center of gravity (the “mean”) of W: 

3.   Shift the search window to the mean 

4.   Repeat steps 2+3 until convergence 

Slide adapted from Steve Seitz 
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Region of 

interest 

Center of 

mass 

Mean Shift 

vector 

Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 
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Region of 

interest 

Center of 

mass 

Mean Shift 

vector 

Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 
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Region of 

interest 

Center of 

mass 

Mean Shift 

vector 

Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 
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Region of 

interest 

Center of 

mass 

Mean Shift 

vector 

Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 
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Region of 

interest 

Center of 

mass 

Mean Shift 

vector 

Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 
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Region of 

interest 

Center of 

mass 

Mean Shift 

vector 

Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 
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Region of 

interest 

Center of 

mass 

Mean-Shift 

Slide by Y. Ukrainitz & B. Sarel 
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Tessellate the space  
with windows 

Run the procedure in parallel 

Slide by Y. Ukrainitz & B. Sarel 

Real Modality Analysis 
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The blue data points were traversed by the windows towards the mode. 

Slide by Y. Ukrainitz & B. Sarel 

Real Modality Analysis 
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Mean-Shift Clustering 

•  Cluster: all data points in the attraction basin of a mode 

•  Attraction basin: the region for which all trajectories 

lead to the same mode 

Slide by Y. Ukrainitz & B. Sarel 
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Mean-Shift Clustering/Segmentation 

•  Choose features (color, gradients, texture, etc) 

•  Initialize windows at individual pixel locations 

•  Start mean-shift from each window until convergence 

•  Merge windows that end up near the same “peak” or 

mode 

Slide adapted from Svetlana Lazebnik 
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Mean-Shift Segmentation Results 

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html 

Slide credit: Svetlana Lazebnik 
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Summary Mean-Shift 

•  Pros 
"  General, application-independent tool 

"  Model-free, does not assume any prior shape (spherical, 
elliptical, etc.) on data clusters 

"  Just a single parameter (window size h)  

–  h has a physical meaning (unlike k-means) == scale of clustering 

"  Finds variable number of modes given the same h 

"  Robust to outliers 

•  Cons 
"  Output depends on window size h 

"  Window size (bandwidth) selection is not trivial 

"  Computationally rather expensive 

"  Does not scale well with dimension of feature space 

Slide adapted from Svetlana Lazebnik 


