Introduction to Vision and Robotics:

Computer Vision

Image segmentation

Vittorio Ferrari

Many slides in this lecture are due to other authors; they are credited on the bottom right



Topics of This Lecture

e Problem definition and goals

e Greylevel segmentation by thresholding

e Background removal
e Canny edge detection

e Segmentation into multiple regions with mean-shift



Image Segmentation

e Goal: identify groups of pixels that go together

Slide credit: Steve Seitz, Kristen Grauman



The Goals of Segmentation

e Separate image into objects

Image Human segmentation

Slide credit: Svetlana Lazebnik



Topics of This Lecture

e Problem definition and goals

e Greylevel segmentation by thresholding
e Background removal

e Canny edge detection

e Segmentation into multiple regions with mean-shift



Isolating flat parts

Isolate parts, then characterise later

Assume
e Dark part
e Light background

e Reasonably uniform illumination — > distinguishable

parts

Slide credit: Bob Fisher



Given this image, how might we
label pixels as object and
background?

Slide credit: Bob Fisher



Thresholding Introduction

Key technique: thresholding
Assume pixel values are separable

Part and typical distribution

000000

Spread: not quite uniform illumination + part color
variations + sensor noise

Slide credit: Bob Fisher



Thresholding

Thresholding: central technique

for row = 1 : height
for col = 1 : width
if value(row,col) < ThreshHigh % inside high bnd
% & value(row,col) > ThreshLow 7 optional low bnd
output (row,col) = 1;
else
output (row,col) = O;

end

Slide credit: Bob Fisher
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Slide credit: Bob Fisher



Threshold Selection

Exploit bimodal distribution

00000 F

- But:

e Distributions broad and some overlap — >

misclassified pixels
e Shadows dark so might be classified with object
e Distribution has more than 2 peaks

So: smooth histogram to improve shape for selection

Slide credit: Bob Fisher



Convolution

General purpose image (and signal) processing function

Computed by a weighted sum of image data and a fixed

mask
Linear operator: conv(a*B,C) = a*conv(B,C)

Used in different processes: noise removal, smoothing,

feature detection, differentiation, ...

Slide credit: Bob Fisher



Convolution in 1D

Output(x Z weight (i) * input(x — 1)
1=—N

.

Input:

Gaussmm Mask and Output:
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Derivative of Gaussian Mask and Output:
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Slide credit: Bob Fisher



Histogram Smoothing for

threshold selection

Histogram Smoothing (in findthresh.m)
Convolve with a Gaussian smoothing window

filterlen = 50; %» filter length
thefilter = gausswin(filterlen,sizeparam); % size=4
thefilter = thefilter/sum(thefilter); 7% unit norm
tmp2=conv(thefilter,thehist); ’, makes longer output
% select corresponding portion

offset = floor((filterlen+1)/2);

tmpl=tmp2 (offset:lent+toffset-1);

Slide credit: Bob Fisher



FILTER SHAPE SMOOTHED HISTOGRAM

Slide credit: Bob Fisher



Threshold Selection

Assume 2 big peaks, brighter background is higher:
1. Find biggest peak (background)
2. Find next biggest peak in darker direction

3. Find lowest point in trough between peaks

Slide credit: Bob Fisher



Peak Pick Code

Omit special cases for ends of array and closing ‘end’s.

peak = find(tmpl == max(tmpl)); % find largest peak

% find highest peak to left
xmaxl = -1;
for 1 = 2 : peak-1
if tmpl(i-1) < tmpl(i) & tmpl(i) >= tmpl(i+l)
& tmpl(i)>xmaxl
xmaxl = tmpl(i);
pkl = 1i;

Slide credit: Bob Fisher



%» find deepest valley between peaks
xminl = max(tmpl)+1;
for 1 = pkl+l : peak-1
if tmpl(i-1) > tmpl(i) & tmpl(i) <= tmpl(i+l)
& tmpl(i)<xminl
xminl = tmpl(i);
thresh = 1i;

Slide credit: Bob Fisher



Adaptive Thresholding

What if varying and unknown background? Can select
threshold locally

At each pixel, use a different threshold calculated from
an NxN window (N=100)

Use: threshold = mean(window) - Constant (eg. 12)

1
Image with intensity gradient Histogram

Slide credit: Bob Fisher



Adaptive Thresholding Code

N = 100;

[H,W] = size(inimage);

outimage = zeros(H,W);

N2 = floor(N/2);

for 1 = 1+N2 : H-N2

for j = 1+N2 : W-N2
% extract subimage
subimage = inimage(i-N2:i+N2,j-N2:j+N2);
threshold = mean(mean(subimage)) - 12;
if inimage(i,j) < threshold
outimage(i,j) = 1;

else

outimage(i,j) = O;

Slide credit: Bob Fisher



end
end

end

Slide credit: Bob Fisher



Adaptive Thresholding Results

Selection has included shadow at bottom and right

Slide credit: Bob Fisher



Background Removal

If known but spatially varying illumination

Reflectance: percentage of input illumination reflected. A
function of the light source, viewer and surface colors and
positions.

Recall:
background(r,c) = illumination(r,c)*bg_reflectance(r,c)

object(r,c) = illumination(r,c)*obj_reflectance(r,c)

Slide credit: Bob Fisher



Divide to remove illumination:
unknown(r,c) /background(r,c) =
1 if unknown = background

<<1 if unknown = dark object

Pick threshold in [0,1] e.g. 0.6

Slide credit: Bob Fisher



Background removal results 1

Part Background

Slide credit: Bob Fisher



Background removal results 2
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Slide credit: Bob Fisher



Background removal results 3

Has also included shadow below and right.

Slide credit: Bob Fisher



Colour background removal

Before

change=open(2,coloror(thresh(35,abs(Before-After))))
(Use HSI instead of RGB to cope with illumination
changes?)

Slide credit: Bob Fisher



Colour background removal

ORed change Opened

Slide credit: Bob Fisher



Coping with varying lighting
Use normalised RGB:

r g b
(r,9,0) — (

r+g+br+g+br+g+b

)

Double illumination still gives same normalised RGB:

(O -
r+g+br+g+br+g+b
2r 2q 2b

= )

2r +2g + 2b" 2r + 2g + 20 2r + 2g + 2b

Slide credit: Bob Fisher



Normalised RGB Example

Original Normalised

Reduces shadow effects, too.

Slide credit: Bob Fisher



Topics of This Lecture

e Problem definition and goals

e Greylevel segmentation by thresholding
e Background removal

e Canny edge detection

e Segmentation into multiple regions with mean-shift



Edge detection

« Goal: ldentify sudden
changes (discontinuities) in )
an image r” N

* Intuitively, most semantic and shape
information from the image can be
encoded in the edges

* More compact than pixels

 ldeal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe



Origin of edges

Edges are caused by a variety of factors:

%4 surface normal discontinuity

depth discontinuity

- ————>
A O’[./J\) surface color discontinuity
LA~ Z

illumination discontinuity

Source: Steve Seitz



Characterizing edges

* An edge is a place of rapid change in the
iImage intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative



Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

af(xay) =1imf(x+g’y)_f(x’y)

o0x ¢—>0 E

For discrete data, we can approximate using finite
differences:

of (x,y) _f(x+Ly)-f(x )
ox |

How to implement the above? = convolutions!

Source: K. Grauman



Defining 2D convolutions

* Let fbe the image and g be the kernel. The
output of convolving f with g is denoted 7 * g.

(f *g)lm,n] = Zf[m—k,n—l]g[k,l]

of)

Convention: f
kernel is “flipped”

« MATLAB functions: conv?2, filter2, imfilter

Source: F. Durand



Key properties

 Linearity: filter(f, + f,) = filter(f,) + filter(f,)
« Shift invariance: same behavior regardless of
pixel location: filter(shift(f)) = shift(filter(f))

* Theoretical result: any linear shift-invariant
operator can be represented as a convolution



Partial derivatives of an image

Which shows changes with respect to x?



Finite difference filters

Other approximations of derivative filters exist:
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Source: K. Grauman



Image gradient

The gradient of animage: V[ = [gzjg, g:{;]

I_Vf = [3.9]

The gradient points in the direction of most rapid increase
In intensity
How does this direction relate to the direction of the edge?

The gradient direction is given by # = tan—! (2—5/%}

The edge strength is given by the gradient magnitude
Df\2 | (9f\2
VA1l = /(D% + (3)

Source: Steve Seitz



Effects of noise

Consider a single row or column of the image
* Plotting intensity as a function of position gives a signal
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Where is the edge?

Source: S. Seitz



Solution: smooth first

Sigma = 50

0 200 400 600 800 1000 1200 1400

oQ
Kernel
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f*g

Convolution

0 200 400 600 800 1000 1200 1400

d
a(f*g)

Differentiation

To find edges, look for peaks in

|
0 200 400 600 800 1000 1200 1400

Source: S. Seitz



Derivative theorem of convolution

 Differentiation is;onvolution,dand convolution
Is associative: L (frg)=frlyg
dx dx

* This saves us one operation:

Sigma = 50

.................................................

~
Signal
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Source: S. Seitz



Now in 2D: Gaussian Kernel

1 (22 4y2)
GO. p— e D02

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5 0=1

« Constant factor at front makes volume sum to 1 (can be
ignored when computing the filter values, as we should
renormalize weights to sum to 1 in any case)

Source: C. Rasmussen



Now in 2D: Gaussian Kernel

o =2 with 30 x 30 o =5 with 30 x 30
kernel kernel

« Standard deviation o: determines extent of smoothing

Source: K. Grauman



Gaussian filters

 Remove “high-frequency” components from
the image (low-pass filter)

 Convolution with self is another Gaussian

« So can smooth with small-o kernel, repeat, and get same
result as larger-o kernel would have

» Convolving two times with Gaussian kernel with std. dev. o
iIs same as convolving once with kernel with std. dev. Oﬁ

« Separable kernel

» Factors into product of two 1D Gaussians - enable efficient
Implementations

Source: K. Grauman



Derivative of Gaussian filter in 2D

— B

2 2

x-direction y-direction

Which one finds horizontal/vertical edges?



Review: Smoothing vs. derivative filters

Smoothing filters
« Gaussian: remove “high-frequency” components;
“low-pass” filter
« Can the values of a smoothing filter be negative?
« What should the values sum to?
— One: constant regions are not affected by the filter

Derivative filters
» Derivatives of Gaussian
« Can the values of a derivative filter be negative?

« What should the values sum to?
— Zero: no response in constant regions

« High absolute value at points of high contrast




The Canny edge detector

original image

Slide credit: Steve Seitz



The Canny edge detector

norm of the gradient



The Canny edge detector

thresholding



The Canny edge detector

it How to turn
M; these thick
-t regions of

the gradient
into curves?

vit)
======-=%-=Threshold
£ Y t
L

Edge

thresholding



Non-maximum suppression
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Check if pixel is local maximum along gradient
direction, select single max across width of
the edge

* requires checking interpolated pixels p and r



The Canny edge detector

Problem:
pixels along
this edge

i didn't
survive the
thresholding

thinning
(non-maximum suppression)



Hysteresis thresholding

Use a high threshold to start edge curves, and a
low threshold to continue them.

Source: Steve Seitz



Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: L. Fei-Fei



Recap: Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
« Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

» Define two thresholds: low and high

« Use the high threshold to start edge curves and
the low threshold to continue them

MATLAB: edge(image, ‘canny’);

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.




Topics of This Lecture

e Problem definition and goals

e Greylevel segmentation by thresholding
e Background removal

e Canny edge detection

e Segmentation into multiple regions with mean-shift



Mean-Shift Segmentation

 An advanced and versatile technique for clustering-
based segmentation

Segmented "landscape 1" ’ Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis,
PAMI 2002.

Slide credit: Svetlana Lazebnik



Finding Modes in a Histogram

12

10+ T

R
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e How many modes are there?
> Mode = local maximum of a given distribution
» Easy to see, hard to compute

Slide adapted from Steve Seitz



Mean-Shift Algorithm

12
S +

10} - -

11y

0 2 4 6 8

e |terative Mode Search
1. Initialize random seed center and window W
2. Calculate center of gravity (the “mean”) of W: Y~ zH(x)
3. Shift the search window to the mean zeW
4. Repeat steps 2+3 until convergence

Slide adapted from Steve Seitz



Mean-Shift

Region of
interest

Center of
mass

& o o Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel



Mean-Shift

Region of
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Slide by Y. Ukrainitz & B. Sarel



Mean-Shift

Region of
interest

Center of
mass

vector

Mean Shift J

Slide by Y. Ukrainitz & B. Sarel



Mean-Shift

Region of
interest

Center of
mass

vector

Mean Shift J

Slide by Y. Ukrainitz & B. Sarel



Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel



Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel



Real Modality Analysis

Tessellate the space Run the procedure in parallel

with windows
Slide by Y. Ukrainitz & B. Sarel



Real Modality Analysis

The blue data points were traversed by the windows towards the mode.
Slide by Y. Ukrainitz & B. Sarel



Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a mode

e Attraction basin: the region for which all trajectories
lead to the same mode

Slide by Y. Ukrainitz & B. Sarel



Mean-Shift Clustering/Segmentation

e Choose features (color, gradients, texture, etc)
e |Initialize windows at individual pixel locations
e Start mean-shift from each window until convergence

e Merge windows that end up near the same “peak” o
mode

Slide adapted from Svetlana Lazebnik



Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Slide credit: Svetlana Lazebnik




More Results

Slide credit: Svetlana Lazebnik



Summary Mean-Shift

e Pros
- General, application-independent tool

> Model-free, does not assume any prior shape (spherical,
elliptical, etc.) on data clusters

> Just a single parameter (window size h)

- h has a physical meaning (unlike k-means) == scale of clustering
» Finds variable number of modes given the same h
> Robust to outliers

e Cons
> Output depends on window size h
> Window size (bandwidth) selection is not trivial
> Computationally rather expensive
~ Does not scale well with dimension of feature space

Slide adapted from Svetlana Lazebnik



