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Noisy Communications
• Noise in a communications channel can cause 

errors in the transmission of binary digits.

• Transmit: 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 …
• Receive:   1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 …

• For some types of information, errors can be 
detected and corrected but not in others.

Example: Transmit: Come to my house at 17:25 …
Receive: Come tc my houzx at 14:25 …



Making Digits Redundant

• In binary error correcting codes, only certain binary 
sequences (called code words) are transmitted.  

• This is similar to having a dictionary of allowable 
words.

• After transmission over a noisy channel, we can 
check to see if the received binary sequence is in the 
dictionary of code words and if not, choose the 
codeword most similar to what was received. 



NATURE’S ERROR CONTROL 
CODE

• Nature’s code is a mapping of RNA sequences to 
proteins. 

• “RNA” consists of four “symbols": A, U, G, and C.
“Proteins” consists of 20 “symbols": the amino 
acids.

• The genetic code is a code in which three 
nucleotides in RNA specify one amino acid in 
protein.  



NATURE’S ERROR CONTROL 
DECODING TABLE

RNA-Amino Acid Coding

AUG starts
codon.

Sometimes one
or more of the
RNA symbols
Is changed. 

Hopefully, the
resultant triplet
still decodes to 
the same protein.



OUTLINE 
• Types of Error Correction Codes
• Block Codes:

– Example: (7,4) Hamming Codes
– General Theory of Binary Group Codes
– Low Density Parity Check (LDPC) Codes
– Reed Solomon (RS) Codes

• Convolutional Codes & Viterbi Decoding
– Example: Rate ½ 4 State Code
– General Description of Convolutional Codes
– Punctured Codes
– Decoding and the Viterbi Algorithm
– Turbo codes



BINARY ERROR 
CORRECTING CODES: (ECC)

• 2k equally likely messages can be represented by k
binary digits.

• If these k digits are not coded, an error in one or 
more of the k binary digits will result in the wrong 
message being received.

• Error correcting codes is a technique whereby more 
than the minimum number of binary digits are used 
to represent the messages. 

• The aim of the extra digits, called redundant or parity
digits, is to detect and hopefully correct any errors 
that occurred in transmission. 



TWO TYPES OF BINARY CODES

• Block Codes

Rate = k / n 

• Convolutional Codes

Rate = k / n 

Message
Source

Block
Encoder

k binary digits
0 1 0 1 . . . 1

n binary digits, n > k
0 1 0 1 . . . 1 1 0 0 . . . 1

k binary digits
0 1 0 1 . . . 1

n binary digits, n > k
0 1 1 0 1 0 . . . 1 1

Message
Source

Convolutional
Encoder



TYPES OF ECC

• Binary Codes

– Encoder and decoder works on a bit basis.

• Nonbinary Codes

– Encoder and decoder works on a byte or symbol basis.
– Bytes usually are 8 bits but can be any number of bits.
– Galois field arithmetic is used.
– Example is a Reed Solomon Code
– More generally, we can have codes where the number of 

symbols is a prime or a power of a prime.



TYPES OF DECODERS – BINARY CASE

• Hard input decoders
– Input to decoders are 0’s and 1’s.

• Soft input decoders
– Input to decoders are probabilities of 0’s and 1’s.

• Hard output decoders
– Output of decoders are 0’s and 1’s.

• Soft output decoders
– Output of decoders are probabilities of 0’s and 1’s.



Error Correcting and Detecting 
Codes

• Binary block codes are easy to understand.

• Block code example:
Information Codeword

00 000101
01 010010
10 101101
11 111010

Which codeword was transmitted?
(a) Receive: 111011
(b) Receive: 100101



HAMMING BINARY BLOCK CODE 
WITH k=4 AND n=7

• In general, a block code with k information digits and 
block length n is called an (n,k) code.

• Thus, this example  is called an (7,4) code.

• This is a very special example where we use pictures 
to explain the code.  Other codes are NOT
explainable in this way.

• All that we need to know is modulo 2 addition, ⊕:
0 ⊕ 0 = 0,    1 ⊕ 0 = 1,    0 ⊕ 1 = 1,    1 ⊕ 1 = 0.



HAMMING BINARY BLOCK CODE WITH 
k=4 AND n=7

• Message digits: C1 C2 C3 C4

• Code word C1 C2 C3 C4 C5 C6 C7

Parity Check Equations:

C1 ⊕ C2 ⊕ C3 ⊕ C5 = 0
C1 ⊕ C3 ⊕ C4 ⊕ C6 = 0
C1 ⊕ C2 ⊕ C4 ⊕ C7 = 0

Parity Check Matrix:
1  1  1  0  1  0  0
1  0  1  1  0  1  0  
1  1  0  1  0  0  1  

C2

C3C4

C1

C5

C6

C7

There is an even number
of 1’s in each circle.

The circles
represent
the equations.



HAMMING (7,4) CODE: ENCODING

• Message: (C1 C2 C3 C4 ) = (0  1  1  0)

• Resultant code word:  0  1   1   0 0  1  1

C2=1

C3=1C4=0

C1=0
C5=0

C6=1

C7=1 C5

C6

C7



HAMMING (7,4) CODE: DECODING

• Transmitted code word:  0  1   1   0 0  1  1

• Example 1: Received block with one error in a 
message bit. 0  1   0 0 0  1  1

1

00
0

0

1

1

By counting 1’s in each circle we 
find:

There is an error in right circle.

There is an error in bottom circle

There is no error in left circle.

Therefore the error is in the third 
digit!



HAMMING (7,4) CODE: DECODING

• Transmitted code word:  0  1   1   0 0  1  1

• Example 2: Received block with one error in parity 
bit: 0  1   1   0 0  0 1

1

10
0

0

0

1 There is no error in right circle.

There is an error in bottom circle

There is no error in left circle.

The 6th digit is in error!



HAMMING (7,4) CODE: DECODING

• Transmitted code word:  0  1   1   0 0  1  1

• Example 3: Received block with two errors:
1 1   1   0 0  0 1

1

10
1

0

0

1 There is an error in right circle.

There is no error in bottom circle

There is an error in left circle.

The 2nd digit is in error.

WRONG!!!



HAMMING (7,4) CODE: SYNDROME 
DECODING

• Let R1 R2 R3 R4 R5 R6 R7 be the received block of 
binary digits, possibly with errors.

• Counting 1’s in the circles is the same as computing 
the result of the following equations: 

• S1, S2 and S3 is called the syndrome.

R1 ⊕ R2 ⊕ R3 ⊕ R5 = S1
R1 ⊕ R3 ⊕ R4 ⊕ R6 = S2

R1 ⊕ R2 ⊕ R4 ⊕ R7 = S3

R2

R3R4

R1

R5

R6

R7



HAMMING (7,4) CODE: SYNDROME 
DECODING

• Resultant code word:  0  1   1   0 0  1  1

• Example 1: Received block with one error in a 
message bit. 0  1   0 0 0  1  1

1

00
0

0

1

1

There is an error in right circle. S1 = 1

There is an error in bottom circle. S2 = 1

There is no error in left circle. S3 = 0

Parity Check Matrix:
1  1  1  0  1  0  0
1  0  1  1  0  1  0  
1  1  0  1  0  0  1



HAMMING (7,4) CODE: SYNDROME 
DECODING

• Transmitted code word:  0  1   1   0 0  1  1

• Example 2: Received block with one error in parity 
bit: 0  1   1   0 0  0 1

1

10
0

0

0

1

There is no error in right circle. S1=0

There is an error in bottom circle.S2=1

There is no error in left circle. S3=0

Parity Check Matrix:
1  1  1  0  1  0  0
1  0  1  1  0  1  0  
1  1  0  1  0  0  1



HAMMING (7,4) CODE: SYNDROME 
DECODING

• Thus to correct a single error based upon the 
received sequence R1, R2, R3, R4, R5, R6, R7:

– one can first compute the syndrome S1, S2, S3 ,
– and then compare it with the columns of the parity check 

matrix.
– The matching column is where the error occurred.

• This technique will work for any single error 
correcting code.



HAMMING (7,4) CODE

• Another way of decoding is to compare the received 
sequence to all of the code words and choose the 
one that is “closest” to it, that is differs from it in the 
fewest number of positions.

• The list of 16 code words for this code is shown on 
the next slide.

• No matter how we decode, if more than one error 
occurs in the block of 7 digits the decoder will 
decode to the wrong code word.



LIST OF CODE WORDS:
HAMMING (7,4) CODE

0 0 0 0 0 0 0

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

1 1 0 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
0 1 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 1 1 0 1

1 1 1 0 1 0 0
1 1 0 1 0 0 1
1 0 1 1 0 1 0
0 1 1 1 0 0 0

1 1 1 1 1 1 1



PROPERTIES OF BINARY PARITY 
CHECK CODES

• An (n,k) binary parity check code (also called an (n,k) group 
code) is a set of code words of length n, which consist of all of 
the binary n-vectors which are the solutions of r = (n-k) linearly 
independent equations called parity check equations.

• Each parity check equation specifies a subset of the 
components of the n-vector which sum to 0, modulo 2.

• If one has r = (n-k) linearly independent equations, there will be 
some set of k of the components of the n-vectors which can be 
arbitrarily specified such that one can solve for the other     
r = (n-k) components.  



PROPERTIES OF BINARY PARITY 
CHECK CODES

• The k components that are specified are called information 
digits (or message digits) and the other r = (n-k) components 
are called parity digits (or redundant digits).

• Since there are a set of k binary symbols that can be chosen 
arbitrarily, these symbols can be filled in 2k different ways.

• Thus the complete list of code words contains 2k code words.

• Note that the all-zero vector always satisfies these parity check 
equations since any subset of the components of the all-zero 
vector sums to 0 modulo 2.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• The coefficients of the r = (n-k) linearly independent 
parity check equations can be written as a matrix 
called the parity check matrix and is denoted H.  

• The parity check matrix has r rows and n columns.

• The i-jth entry (ith row and jth column) in this parity 
check matrix, hi,j, is equal to 1 if and only if the jth
component of a code word is contained in the ith
parity check equation.  Otherwise it is equal to 0.



FOR HAMMING (7,4) CODE
• For the Hamming (7,4) code there were 3 equations

C1 ⊕ C2 ⊕ C3 ⊕ C5 = 0
C1 ⊕ C3 ⊕ C4 ⊕ C6 = 0
C1 ⊕ C2 ⊕ C4 ⊕ C7 = 0.

Thus the parity check matrix for this code is:

1 1 1 0 1 0 0
H = 1 0 1 1 0 1 0

1 1 0 1 0 0 1    .



FOR HAMMING (7,4) CODE
• For the Hamming (7,4) code there were 3 linearly 

independent equations

C1 ⊕ C2 ⊕ C3 ⊕ C5 = 0
C1 ⊕ C3 ⊕ C4 ⊕ C6 = 0
C1 ⊕ C2 ⊕ C4 ⊕ C7 = 0

so r=3 and k=4.  Thus there are 24 = 16 code words in 
this code.

• Note that the all-zero vector is a code word.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• Since the parity check equations are linear (modulo 
2), if C1 is a solution of the equations and if C2 is a 
solution to the equations, then C1 ⊕ C2 is also a 
solution to the equations.

• Thus the modulo 2 sum of any two code words is a 
code word.

• Consider the set of k distinct code words each of 
which had a single 1 in one of the information 
positions.  Any of the 2k code words can be 
constructed by taking a linear combination of these 
k code words.  

• These k code words are said to be generators of the 
code.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• A k row by n column matrix made up of these code 
words is called the generator matrix, GG, of the code.  

• We will assume that the components of the code 
words are ordered so that the first k components are 
the message digits.  Then the rows of G can be 
ordered so that there is a k by k unit matrix on the 
left.



LIST OF CODE WORDS:
HAMMING (7,4) CODE

0 0 0 0 0 0 0

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

1 1 0 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
0 1 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 1 1 0 1

1 1 1 0 1 0 0
1 1 0 1 0 0 1
1 0 1 1 0 1 0
0 1 1 1 0 0 0

1 1 1 1 1 1 1

This is the generator matrix of the code.



FOR HAMMING (7,4) CODE
• In the list of 16 code words for the (7,4) Hamming 

code, the 16 code words can be formed by taking all 
of the linear combinations of the code words having 
a single 1 in the information positions.  These were:

1 0 0 0 1 1 1
GG = 0 1 0 0 1 0 1

0 0 1 0 1 1 0
0 0 0 1 0 1 1

This 4-row by 7-column matrix is the generator 
matrix, G, of the code.  Note the 4 by 4 unit matrix on 
the left.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• For any (n,k) binary code, assume the parity check matrix H is 
of the form:

H = [AA 1r,r,]

where A is an arbitrary (n-k) by k binary matrix and where       
1r,r is an r by r unit matrix. 

• Then GG is of the form:

GG = [1k,k    AT]

where 1k,k is a k by k unit matrix and AT is A transpose.  The 
proof follows.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• Since every code word C must satisfy the parity check 
equations, this says that C must satisfy the matrix vector 
equation:

H C = 0. 
Here we are assuming that C and 0 are column vectors of 
dimension n and r=(n-k) respectively. 

• But since the rows of G are all code words, the H and G must 
satisfy the matrix equation:

H Gt = 0.
Here Gt is the transpose of the matrix G.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• Proof:

H Gt = [AA 1r,r,] [1k,k    AT]T

= [AA 1r,r,] 1k,k

A
= A ⊕ A = 0



FOR HAMMING (7,4) CODE
• The parity check matrix for this code is:

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1    

and the generator matrix is:

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1



PROPERTIES OF BINARY PARITY 
CHECK CODES

• If X and Y are any two binary vectors of the same 
length, define the Hamming distance between X and 
Y, denoted dH(X,Y), as the number of positions in 
which X and Y differ.

• For any binary vector Z, define the Hamming weight
of Z, denoted wH(Z), as the number of 1’s in the 
vector Z.

• Then it is easy to see that dH(X,Y) = wH(X ⊕ Y). 



PROPERTIES OF BINARY PARITY 
CHECK CODES

• The minimum Hamming distance of a code C, denoted dmin(C),  
is defined as the minimum Hamming distance between any two 
distinct code words in C.

• For any two code words, Ci and Cj, 

Ci ⊕ Cj = Ck.

• But then,

dH(Ci , Cj) = wH(Ci ⊕ Cj) = wH(Ck) 

• Thus, dmin(C) is equal to the minimum Hamming weight of any 
non-zero code word. 



HAMMING (7,4) CODE
0 0 0 0 0 0 0

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

1 1 0 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
0 1 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 1 1 0 1

1 1 1 0 1 0 0
1 1 0 1 0 0 1
1 0 1 1 0 1 0
0 1 1 1 0 0 0

1 1 1 1 1 1 1

For this (7,4) Hamming code, dmin = 3.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• For any code that has minimum distance dmin: 

– The code can detect any pattern of (dmin– 1) or fewer errors.

– The code can fill in any pattern of (dmin– 1) or fewer 
erasures.

– The code can correct any pattern of int[(dmin– 1)/2] or fewer 
errors.

– The code can simultaneously fill in e or fewer erasures and 
correct t or fewer errors if: 

2t + e < (dmin– 1).



HAMMING (7,4) CODE

• Since the (7,4) Hamming code has minimum distance 
dmin= 3: 

– The code can detect any pattern of 2 or fewer errors.  It can 
detect many more error patterns than that.  This will be 
discussed later.

– The code can correct any single error.

– The code can fill in any pattern of 2  or fewer erasures. It can
sometimes fill in 3 erasures.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• Since every code word C must satisfy the parity 
check equations, then C must satisfy the equation:

H C = 0.

• Assume that C is a code word that has d 1’s and    
(n- d) 0’s.  Then, d columns of H must sum to 0 . 

• The smallest value of d for which this is true is d= 
dmin. Thus dmin columns of H sum to 0 and no fewer 
than dmin columns of H sum to 0. 

• Said in another way, a code has minimum distance 
dmin, if and only if dmin columns of H sum to 0 and no 
fewer than dmin columns of H sum to 0.



HAMMING (7,4) CODE
• Consider the parity check matrix for the Hamming (7,4) code:

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1 

• No single column is 0 and no two columns sum to 0. (Two 
columns sum to 0 iff the columns are the same.)

• But there are many instance where 3 columns sum to 0: e.g., 
the 4th, 6th and 7th column of the parity check matrix.

• Thus dmin = 3 for the code.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• Sometimes we modify a code by adding one more 
parity digit, called an overall parity digit.  

• The equation corresponding to this extra parity digit 
is such that the modulo 2 summation of all of the 
digits in the code word (including this overall parity 
digit) is equal to 0.

• The result is that the parity check matrix is modified 
by adding an extra row of all 1’s and a column on the 
right of all 0’s and a 1 at the bottom.



PROPERTIES OF BINARY PARITY 
CHECK CODES

• This overall parity digit insures that every code word 
has even Hamming weight.

• Thus if an overall parity digit is appended to a code 
that had an odd minimum Hamming distance, dmin,  
then the new code has a minimum distance (dmin +1).

• However, the new code has one more parity digit and 
the same number of information digits as the original 
code. (The new code has block length one more than 
the original code.)



MODIFYING A HAMMING (7,4) 
CODE

• Original (7,4) code had a parity check matrix given 
as:

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

• The new code is an (8,4) code with parity check 
matrix:

1 1 1 0 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1

• The new code has dmin = 4.



MODIFYING A HAMMING (7,4) 
CODE

• But this parity check matrix does not have a unit matrix on the 
right.  We can make this happen by replacing the last equation 
with the sum of all of the equations resulting in the parity check 
matrix:

1 1 1 0 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 1

• Note that dmin = 4 since 4 columns sum to 0 (e.g., the 1st, 5th, 6th

and 7th) but no fewer than 4 columns sum to 0. 



HAMMING (8,4) CODE
• The code words in the new code are:

0 0 0 0 0 0 0 0

1 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

1 1 0 0 0 1 0 1
1 0 1 0 0 0 1 1
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 1 0 0
0 0 1 1 1 0 1 0

1 1 1 0 1 0 0 0
1 1 0 1 0 0 1 0
1 0 1 1 0 1 0 0
0 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1



DECODING OF BINARY PARITY 
CHECK CODES

• Assume that one is using a code with parity check 
matrix H and that the transmitter transmits a code 
word C.

• Assume the receiver receives the binary vector R
where R = C ⊕ E.  Thus E = C ⊕ R.

• E is called the error vector and has a 1 in those 
positions where C and R differ (i.e., where there are  
errors) and 0’s elsewhere.



SYNDROME DECODING OF BINARY 
PARITY CHECK CODES

• The decoder first forms the syndrome S using the 
parity check matrix H and R by calculating:

S = H R.

• Note that since R= C ⊕ E and since H C = 0, then      

S = H R = H(C ⊕ E) = HC ⊕ HE = 0 ⊕ HE.

• Thus S = HE.  This says that the syndrome, S, is 
equal to the modulo 2 summation of those columns 
of H where the errors occurred.



SYNDROME DECODING OF BINARY 
PARITY CHECK CODES

• But there are many solutions for E to the equation 

S = HE.

• In fact for each possible syndrome S there are 2k

different vectors E that satisfy that equation since if 
E is a solution so is E ⊕ C for any code word C. 

• For a random error channel with bit error probability 
p < 0.5, the most likely solution for E is the one that 
corresponds to the fewest errors.  This means 
choosing the vector E with the fewest non-zero 
components.



BINARY PARITY CHECK CODES: 
ENCODING

• There are many circuits that are used in encoding 
binary parity check codes.

• For any code, if k is not too large, one can use a 
table of size 2k by r, where we input the k information 
digits as an address and look up the r parity digits.



ENCODING THE HAMMING (7,4) 
CODE USING A TABLE

• Parity check matrix:
1 1 1 0 1 0 0

H= 1 0 1 1 0 1 0
1 1 0 1 0 0 1

• Encoding table:    Information Digits Parity Digits
0  0  0  0 0  0  0
0  0  0  1 0  1  1
0  0  1  0 1  1  0
0  0  1  1 1  0  1
.    .   .   . .    .   .
.    .   .   . .    .   .

1  1  1  1  1  1  1



BINARY PARITY CHECK CODES: 
M.L. DECODING

• If the code words are transmitted with equal apriori
probability over a B.S.C. with error probability p,       
p < 0.5, a decoder which results in the smallest 
probability of word error is as follows:

Compare the received vector R with every code word and
choose the code word that differs from it in the fewest 
positions.

• This is like the optimal detector found in ECE 154B 
for the Gaussian channel but we here we use 
Hamming distance instead of Euclidean distance.

• Since there are 2k code words, this is impractical if k 
is large. 



BINARY PARITY CHECK CODES: 
SYNDROME DECODING

• Assume we first compute the syndrome.  

• For many codes, one finds the minimum Hamming 
weight vector E which is the solution to the equation 
S = HE by algebraic means.

• However, if the dimension of S, r, is not too big one 
can construct a decoding table with 2r entries that 
relate the syndrome to the minimum Hamming 
weight error pattern, E.

• Such a decoder would be maximum likelihood.



DECODING THE HAMMING (7,4) 
CODE USING A TABLE

• Parity check matrix:
1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

• Decoding table: Syndrome Error Pattern
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0



BINARY PARITY CHECK CODES: 
SYNDROME DECODING BY TABLES
• If both k and r are not too large, two tables can be used to do the 

entire decoding.

• The syndrome can be calculated from R by using the encoding table 
with 2k entries as follows:

1. The first k components of R are used as the address in the 
encoding table and the resulting parity bits are added (bit by bit 
modulo 2) to the last r bits of R.
2. The result is the syndrome S.

• Then the syndrome is used as the address in the decoding table with 
2r entries and the error pattern is read from the table.  

• The error pattern is then added to R to find the decoded code word.



BINARY PARITY CHECK CODES: 
SYNDROME DECODING

R = R1…RN

ENCODING

TABLE

R1…RK

⊕

DECODING
TABLE

RK+1…RN

⊕
E

S

C

R = R1…RN



TABLE LOOK UP DECODER: 
HAMMING (7,4) CODE

R = R1…R7

ENCODING
TABLE

SIZE 16

R1…R4

⊕

DECODING
TABLE

SIZE 8

R5…R7

⊕
E

S = S1…S3

C

R = R1…R7



CONSTRUCTING OTHER 
BINARY HAMMING CODES

• One can construct single error correcting binary 
codes with dmin=3 having other block lengths.

• If one wants a code of block length n=(2r-1) for any 
integer r, the n columns of the parity matrix are 
chosen as the (2r-1) distinct non-zero vectors of 
length r. Note that since there are r rows in the parity 
matrix, r is the number of parity digits in the code.

n 7 15 31 63 127 255
k 4 11 26 57 120 247
r 3 4 5 6 7 8



THE GOLAY (23,12) CODE
• This code has dmin=7. A parity check matrix for this 

code is:

1  1  1  1  1  0  0  1  0  0  1  0  1  0  0  0  0  0  0  0  0  0 0
0  1  1  1  1  1  0  0  1  0  0  1  0  1  0  0  0  0  0  0  0  0 0
1  1  0  0  0  1  1  1  0  1  1  0  0  0  1  0  0  0  0  0  0  0 0
0  1  1  0  0  0  1  1  1  0  1  1  0  0  0  1  0  0  0  0  0  0 0
1  1  0  0  1  0  0  0  1  1  1  1  0  0  0  0  1  0  0  0  0  0 0

H= 1  0  0  1  1  1  0  1  0  1  0  1  0  0  0  0  0  1  0  0  0  0 0
1  0  1  1  0  1  1  1  1  0  0  0  0  0  0  0  0  0  1  0  0  0 0 
0  1  0  1  1  0  1  1  1  1  0  0  0  0  0  0  0  0  0  1  0  0 0
0  0  1  0  1  1  0  1  1  1  1  0  0  0  0  0  0  0  0  0  1  0 0
0  0  0  1  0  1  1  0  1  1  1  1  0  0  0  0  0  0  0  0  0  1 0
1  1  1  1  0  0  1  0  0  1  0  1  0  0  0  0  0  0  0  0  0  0 1



THE GOLAY (23,12) CODE

• Since the (23,12) Golay code has dmin=7, it can 
correct all patterns of 1, 2, or 3 errors in each code 
block of 23 digits.

• The decoder uses two table: one of size  212 and the 
other of size 211.

• One can make a (24,12) code with dmin=8 by 
appending an overall parity digit to the (23,12) Golay
code. To decode this (24,12) code one could use a 
two tables of size 212.



TABLE LOOK UP DECODER: 
GOLAY (23,12) CODE

R = R1…R23

ENCODING
TABLE

SIZE 212

R1…R12

⊕

DECODING
TABLE

SIZE 211

R13…R23

⊕
E

S = S1…S11

C

R = R1…R23



TABLE LOOK UP DECODER: 
GOLAY (24,12) CODE

R = R1…R24

ENCODING
TABLE

SIZE 212

R1…R12

⊕

DECODING
TABLE

SIZE 212

R13…R24

⊕
E

S = S1…S12

C

R = R1…R24



SHORTENING BINARY PARITY 
CHECK CODES

• For any positive integer “a” (a< k), if one starts with 
an (n,k) binary parity check code with minimum 
distance dmin, one can construct an (n-a, k-a) parity 
check code with minimum distance at least dmin.

• One can do this by setting the setting the first “a”
information digits to 0 and not transmitting them.

• The parity check matrix of this (n-a,k-a) code is 
formed from the parity check matrix of the (n,k) code 
by eliminating the first “a” columns.



SHORTENING BINARY PARITY 
CHECK CODES

• For example, if one shortens the (24,12) with dmin=8 
by 2 digits (i.e., a=2) one would have a (22,10) code 
with minimum distance at least 8.

• If one shortens the code enough the minimum 
distance could actually increase.  This is true, since 
the minimum distance between the remaining code 
words might be greater than the minimum distance 
between the original list of code words.

• There is no general rule, however, which predicts by 
how much the minimum distance would increase.



PUNCTURING BINARY PARITY 
CHECK CODES

• While shortening a code reduces the number of 
information digits in a code, puncturing a code 
reduces the number of parity digits.

• One punctures a code by eliminating one or more of 
the parity equations and thus eliminating the 
corresponding parity digits.  

• In general, puncturing a code reduces the minimum 
distance of the code but increases the code rate, R.



ERROR DETECTION ONLY
• If one only wants to detect errors, one can compute the 

syndrome to see if it is all-zero.  
– If the syndrome is all-zero one assumes that no errors occurred 

since the received vector is a code word.
– If the syndrome is not all zero, one knows that errors have 

occurred.

• The only time that the decoder will be incorrect is if the error
pattern itself is a code word. Then, the syndrome will be all-
zero but errors will have occurred.

• For a binary symmetric channel, if one knows the number of 
code words of each Hamming weight, one can write an 
expression for the probability of undetected error.


