LECTURE 1:
INTRO

Introduction to Scientific Python, CME 193
Jan. 9, 2014

web.stanford.edu/~ermartin/Teaching/CME193-Winterl5
Eileen Martin

Some slides are from Sven Schmit’s Fall ‘14 slides

Course Detalls

When and where: Nvidia Auditorium, 12:50-2:05 Fridays
for the first 8 weeks of the quarter

Grading: 1 unit, pass/falil

Weekly homeworks due each Friday at 12:50 posted on

course website:
web.stanford.edu/~ermartin/Teaching/CME193-Winterl5/assignments.html

Must get at least 70% of homework points to pass
Follow the honor code. Discussion with classmates is ok
but coding must be individual. Moss will be used.
Forums on CourseWork can be used for discussion

Office hrs. Huang basement Mon. 9:30-10:30, Wed.
3:15-4:15

Homework submission

Submit assignments in zipped folder to Coursework Drop
Box

3 late days throughout the quarter

All assignments will be graded on corn (Stanford
FarmShare machines), so make sure your code runs
there

Submit writeups in pdf format

A
Feedback

- Course evaluations only help future classes

- If you want something changed, say so!
- Talk to me
- Email
- Anonymous online survey:
https://www.surveymonkey.com/s/NSVJDDJ

Instructor

- Eileen Martin, PhD student in
ICME

- From Texas (went to UT)

- Undergrad in math and%f
computational physics

- Research in seismic imaging
and associated computational
& mathematical issues

N ~
~
* \o’ N
— - ~ e
AR .
— -
-
.
.
.

Course Overview

Functions

Unit testing

Basic data structures (lists, dictionaries, tuples, sets)
Working with strings

Using data from and writing to files (input/output)
Numpy, Scipy, Matplotlib

Object-oriented programming

lpython notebooks and visualization tools,

Extras: Cython, exception handling

Overview of Python

Easy to use object-oriented language
Data structures have attributes and methods

Typically used as an interpreted language

Code is executed step-by-step, lines translated to subroutines
Cython (another lecture) gives an option for interpreted or compiled

Can be run in interactive mode or with scripts

We’'ll use Python 2 since it's on the corn machines, but it
IS relatively easy to switch to Python 3

Overview Today

- Python’s interactive mode and using scripts
- Values, types, and variables

- Keywords, pre-defined operators

- Modules

- Flow control

Starting Python in interactive mode

- ssh into corn:
ssh -X sunetID@corn.stanford.edu

- Open python in interactive mode:
python

- Type your first command:
“Hello, world!”

- Get some help with the print function:

help()

print

q
- Try using the print function to display Hello, world!
- Quit interactive mode:

quit()

Create and run a Python script

Create and browse to the folder where you want to work,
for example:

mkdir ~/cmel93
mkdir ~/cmel93/lecturel
cd ~/cmel93/1lecturel

Open a new document in your favorite text editor, for
example:

emacs helloWorld.py

Put the following line in that file and save it:
print(“Hello, world!”)

Run the script:
python helloWorld.py

Overview Today

- Python’s interactive mode and using scripts
- Values, types, and variables

- Keywords, pre-defined operators

- Modules

- Flow control

Values and types

- Examples:
True, False bool (boolean)
3.14159, -1.4, 2e-4 float
4, -5, 10000, O int (integer)
“Hello, world!” str (string)
2+3j, -2e-4+2.5e1] complex
None NoneType indicates absence of a value

- To check the type of a variable, x, in interactive mode use
type (x)

Open up a new script, helloWorld2. py
Put the following commands in the script and save:

a = “Hello, world!”
print(a)

print type(a)
a=12

print(a)
print(type(a))

Run the script: python helloWorld2.py

Note that Python doesn’t complain when you suddenly
ask a to change types

Tips for Using Variables

Frequently use variables instead of numbers (easy to
modify/understand code)

Variables should start with a letter and not be a keyword
Choose meaningful variable names, concise & descriptive

These codes check if a connected graph can be drawn
with no edge crossings in a plane:

variable=4 -6 +4
if variable == 2:
print("Planar graph”)

)

face =4
vert =4
edge =6
EulerChar = vert — edge + face
if EulerChar == 2:
print(“Planar graph”)

f=4

v=4

e=06

ec=v—e+f

if ec == 2:
print("Planar graph”)

Overview Today

- Python’s interactive mode and using scripts
- Values, types, and variables

- Keywords, pre-defined operators

- Modules

- Flow control

I N
Keywords in Python

Some examples that we’'ll use in the next few weeks:

print not or def
if, elif, else while for break
import from class return

More description of keywords:
http://www.pythonforbeginners.com/basics/keywords-in-python

Testing whether something is a keyword:
https://docs.python.org/2/library/keyword.html

Statements and Expressions

Statements are instructions Python executes
var = “Hello, world!”

Expressions are made up of values, operators, and
variables

var + “ Hello, again!”

In interactive mode, statements aren’t printed out unless
they call print, but expressions are echoed

When using a script, an expression is not echoed

Booleans

- Expressions:

syntax == I= > >= < <=
equals doesn’t greater greaterthan less less than
equal than or equal than or equal
el 5 == 51=5 5>4 5>=5 5<4 5<=5
True False True True False True

- Basic operators:
True and False yields False
True or False yields True
not True vyields False

N
Strings

- Basic operators that output strings:
str+ str, str * int, int * str

- Try accessing subsets of strings:
a = “Hello, world!”
print(al0])

print(al:3])
print(all:3])
print(al3:])

Integers vs. floats

Basic operators: + - * /
Modulus %
Exponential **

If operands of / are integers, Python returns the floor of their
quotient by default

If either operand of / is a float, Python returns a float
Note the limits of finite precision and max & min values

In Python 3, / always returns the true quotient as a float

Overview Today

- Python’s interactive mode and using scripts
- Values, types, and variables

- Keywords, pre-defined operators

- Modules

- Flow control

Modules

Python has a lot of extra functionality that must be loaded
as needed by importing modules

Examples: Numpy, Matplotlib, Scipy

For example, if you want to overwrite the default integer
division in Python 2 to return the true result, try:

>>> from _ future__ import division
>>> 1/2
©.5

Or you could get more mathematical functionality:

>>> import math
>>> math.pi
3.141592653589793

Overview Today

- Python’s interactive mode and using scripts
- Values, types, and variables

- Keywords, pre-defined operators

- Modules

- Flow control

Flow control

These control statements structure a code’s logical flow:
if, elif, else, for, while,

Each brown control statement determines whether a block
of code is executed

That block is set apart with an indentation (not spaces).

a = 2
statement = (a >= 1)
1f statement:

print “True statement”
a -=1

print a

[f-Elif-Else statements

An if-elif-else statement decides whether to execute a

block of code one time.

These two snippets are logically equivalent:

if traffic _light == ‘green’:
drive()

elif traffic _light == ‘yellow’:
accelerate()

else:
stop()

if traffic _light == ‘green’:
drive()

else:
if traffic _light == ‘yellow’:

accelerate()
else:

stop ()

The elif (short for else
if) keeps code more
compact.

For loops

A for loop lets us repeat a code block

The for loop iterates over some object with data that is
organized like a list

A common function producing a list of integers is
range(n) whichyields 0,1, 2, ..., n-1

In interactive mode (... means it's waiting for end
of code block):

for i in range(5):
print i*(i+l)/2

While loops

A while loop lets us repeat a code block even when we
don’t know how many times it needs to be iterated

It continues evaluating the code block as long as the
statement is true

in interactive mode: 't = o

i=1
while t < 12:
Beware of infinite loops! print t
t += i
i += 1
t =0
i =1 print t
while t < 12:
print t
i+=1

Pass

- pass is nice to use as a placeholder while you're working
on code because it does nothing

Checking for prime numbers
ifn% 2 ==
pass # implement test for odd numbers later
elif n ==
print n, “ is prime”
else:
print n, “ is not prime”

. N
Break

- break lets us exit the smallest for or while loop enclosing
that line

- Try this example from Python documentation:

Finding prime numbers
for n in range(2, 10):
for x in range(2, n):
if n% x ==
print n, ‘equals’, x, “*’, n/X
break
else:
execute if for loop completed
without finding a factor
print n, “is prime’

Continue

continue skips the rest of the lines in the smallest
enclosing loop and continues with the next iteration

13 ”

letter _chosen = “s
sentence = “this is a sentence”
other_chars = 0
for letter 1in sentence:
if letter == letter_chosen:
print letter_chosen, “found”
continue
other _chars += 1
print “There were”, other_chars, “other characters”

First assignment

Posted on the course website:

Tips:
Online documentation is your friend. Don’t hesitate to use it!
Stuck? test smaller, simpler statements in interactive mode
Build test cases to verify correctness of your code
Talk to each other. Use the CourseWork Forums.
Come to office hrs. Mon. 9:30-10:30, Wed. 3:15-4:15

