
LECTURE 1:
INTRO
Introduction to Scientific Python, CME 193
Jan. 9, 2014
web.stanford.edu/~ermartin/Teaching/CME193-Winter15

Eileen Martin

1

Some slides are from Sven Schmit’s Fall ‘14 slides

Course Details
• When and where: Nvidia Auditorium, 12:50-2:05 Fridays

for the first 8 weeks of the quarter
• Grading: 1 unit, pass/fail
• Weekly homeworks due each Friday at 12:50 posted on

course website:
web.stanford.edu/~ermartin/Teaching/CME193-Winter15/assignments.html

• Must get at least 70% of homework points to pass
•  Follow the honor code. Discussion with classmates is ok

but coding must be individual. Moss will be used.
•  Forums on CourseWork can be used for discussion
• Office hrs. Huang basement Mon. 9:30-10:30, Wed.

3:15-4:15

2

Homework submission
• Submit assignments in zipped folder to Coursework Drop

Box
•  3 late days throughout the quarter
• All assignments will be graded on corn (Stanford

FarmShare machines), so make sure your code runs
there

• Submit writeups in pdf format

3

Feedback
• Course evaluations only help future classes
•  If you want something changed, say so!

•  Talk to me
•  Email
•  Anonymous online survey:

 https://www.surveymonkey.com/s/NSVJDDJ

4

Instructor
• Eileen Martin, PhD student in

ICME
•  From Texas (went to UT)
• Undergrad in math and

computational physics
• Research in seismic imaging

and associated computational
& mathematical issues

…

5

Course Overview
• Getting started with Python
• Variables and flow control
•  Functions
• Unit testing
• Basic data structures (lists, dictionaries, tuples, sets)
• Working with strings
• Using data from and writing to files (input/output)
• Numpy, Scipy, Matplotlib
• Object-oriented programming
•  Ipython notebooks and visualization tools, Guest Lecture
• Extras: Cython, exception handling

6

Overview of Python
• Easy to use object-oriented language

•  Data structures have attributes and methods

•  Typically used as an interpreted language
•  Code is executed step-by-step, lines translated to subroutines
•  Cython (another lecture) gives an option for interpreted or compiled

• Can be run in interactive mode or with scripts
• We’ll use Python 2 since it’s on the corn machines, but it

is relatively easy to switch to Python 3

7

• Python’s interactive mode and using scripts
• Values, types, and variables
• Keywords, pre-defined operators
• Modules
•  Flow control

8

Overview Today

Starting Python in interactive mode
•  ssh into corn:
ssh –X sunetID@corn.stanford.edu

• Open python in interactive mode:
python

•  Type your first command:
“Hello, world!”

• Get some help with the print function:
help()
print
q

•  Try using the print function to display Hello, world!
• Quit interactive mode:
quit()

9

Create and run a Python script
• Create and browse to the folder where you want to work,

for example:
mkdir ~/cme193
mkdir ~/cme193/lecture1
cd ~/cme193/lecture1

• Open a new document in your favorite text editor, for
example:
emacs helloWorld.py

• Put the following line in that file and save it:
print(“Hello, world!”)

• Run the script:
python helloWorld.py

10

• Python’s interactive mode and using scripts
• Values, types, and variables
• Keywords, pre-defined operators
• Modules
•  Flow control

11

Overview Today

Values and types
• Examples:

•  To check the type of a variable, x, in interactive mode use
type(x)

12

Value Type
True, False bool (boolean)
3.14159, -1.4, 2e-4 float
4, -5, 10000, 0 int (integer)
“Hello, world!” str (string)
2+3j, -2e-4+2.5e1j complex
None NoneType indicates absence of a value

First Use of Variables
• Open up a new script, helloWorld2.py
• Put the following commands in the script and save:

• Run the script: python helloWorld2.py
• Note that Python doesn’t complain when you suddenly

ask a to change types

13

a = “Hello, world!”
print(a)
print type(a) # print can use keyword or function () syntax
a = 12
print(a)
print(type(a)) # see how a can easily change types

Tips for Using Variables
•  Frequently use variables instead of numbers (easy to

modify/understand code)
• Variables should start with a letter and not be a keyword
• Choose meaningful variable names, concise & descriptive

•  These codes check if a connected graph can be drawn

with no edge crossings in a plane:

14

f = 4
v = 4
e = 6
ec = v – e + f
if ec == 2:
 print(“Planar graph”)

variable = 4 – 6 + 4
if variable == 2:
 print(“Planar graph”)

face = 4
vert = 4
edge = 6
EulerChar = vert – edge + face
if EulerChar == 2:
 print(“Planar graph”)

• Python’s interactive mode and using scripts
• Values, types, and variables
• Keywords, pre-defined operators
• Modules
•  Flow control

15

Overview Today

Keywords in Python
Some examples that we’ll use in the next few weeks:

More description of keywords:
http://www.pythonforbeginners.com/basics/keywords-in-python

Testing whether something is a keyword:
https://docs.python.org/2/library/keyword.html

16

print not or def
if, elif, else while for break
import from class return

Statements and Expressions
• Statements are instructions Python executes

var = “Hello, world!”

• Expressions are made up of values, operators, and
variables (that have assigned values)

var + “ Hello, again!”

•  In interactive mode, statements aren’t printed out unless
they call print, but expressions are echoed

• When using a script, an expression is not echoed

17

Booleans
• Expressions:

• Basic operators:
 True and False yields False
 True or False yields True
 not True yields False

18

syntax == != > >= < <=
name equals doesn’t

equal
greater

than
greater than

or equal
less
than

less than
or equal

example 5 == 5 5 != 5 5 > 4 5 >= 5 5 < 4 5 <= 5
ex. result True False True True False True

Strings
• Basic operators that output strings:

str + str, str * int, int * str

•  Try accessing subsets of strings:
a = “Hello, world!”
print(a[0])
print(a[:3])
print(a[1:3])
print(a[3:])

19

Integers vs. floats
•  Basic operators: + - * /
•  Modulus %
•  Exponential **
•  If operands of / are integers, Python returns the floor of their

quotient by default*
•  If either operand of / is a float, Python returns a float
•  Note the limits of finite precision and max & min values

*In Python 3, / always returns the true quotient as a float

20

• Python’s interactive mode and using scripts
• Values, types, and variables
• Keywords, pre-defined operators
• Modules
•  Flow control

21

Overview Today

Modules
• Python has a lot of extra functionality that must be loaded

as needed by importing modules
• Examples: Numpy, Matplotlib, Scipy
•  For example, if you want to overwrite the default integer

division in Python 2 to return the true result, try:

• Or you could get more mathematical functionality:

22

>>> from __future__ import division
>>> 1/2
0.5

>>> import math
>>> math.pi
3.141592653589793

• Python’s interactive mode and using scripts
• Values, types, and variables
• Keywords, pre-defined operators
• Modules
•  Flow control

23

Overview Today

Flow control
•  These control statements structure a code’s logical flow:
if, elif, else, for, while, break, continue, pass

• Each brown control statement determines whether a block
of code is executed

•  That block is set apart with an indentation (not spaces).

24

a = 2
statement = (a >= 1)
if statement:
 # If statement is True, execute line below
 # If statement is False, don’t execute it
 print “True statement”
 a -= 1
No more indention so next line is executed
whether statement is True or False
print a

If-Elif-Else statements
• An if-elif-else statement decides whether to execute a

block of code one time.
•  These two snippets are logically equivalent:

25

if traffic_light == ‘green’:
 drive()
elif traffic_light == ‘yellow’:
 accelerate()
else:
 stop()

if traffic_light == ‘green’:
 drive()
else:
 if traffic_light == ‘yellow’:
 accelerate()
 else:
 stop()

The elif (short for else
if) keeps code more
compact.

For loops
• A for loop lets us repeat a code block
•  The for loop iterates over some object with data that is

organized like a list
• A common function producing a list of integers is
range(n) which yields 0, 1, 2, … , n-1

•  Try this in interactive mode (… means it’s waiting for end
of code block):

26

Triangular numbers
for i in range(5):
 print i*(i+1)/2
outputs 0 1 3 6 10

While loops
• A while loop lets us repeat a code block even when we

don’t know how many times it needs to be iterated
•  It continues evaluating the code block as long as the

statement is true
•  Try this in interactive mode:

• Beware of infinite loops!

27

Triangular numbers
t = 0
i = 1
while t < 12:
 print t
 t += i
 i += 1
outputs 0 1 3 6 10
print t
outputs 15

Triangular numbers
t = 0
i = 1
while t < 12:
 print t
 i += 1
outputs lots of 0’s

Pass
•  pass is nice to use as a placeholder while you’re working

on code because it does nothing

28

Checking for prime numbers
if n % 2 == 1:
 pass # implement test for odd numbers later
elif n == 2:
 print n, “ is prime”
else:
 print n, “ is not prime”

Break
•  break lets us exit the smallest for or while loop enclosing

that line
•  Try this example from Python documentation:

29

Finding prime numbers
for n in range(2, 10):
 for x in range(2, n):
 if n % x == 0:
 print n, ‘equals’, x, ‘*’, n/x
 break
 else:
 # execute if for loop completed
 # without finding a factor
 print n, ‘is prime’

Continue
•  continue skips the rest of the lines in the smallest

enclosing loop and continues with the next iteration

30

Finding a given letter in a sentence
letter_chosen = “s”
sentence = “this is a sentence”
other_chars = 0
for letter in sentence:

 if letter == letter_chosen:
 print letter_chosen, “found”
 continue
 other_chars += 1

print “There were”, other_chars, “other characters”

First assignment
• Posted on the course website:

http://stanford.edu/~ermartin/Teaching/CME193-Winter15/assignments.html

•  Tips:
•  Online documentation is your friend. Don’t hesitate to use it!
•  Stuck? test smaller, simpler statements in interactive mode
•  Build test cases to verify correctness of your code
•  Talk to each other. Use the CourseWork Forums.
•  Come to office hrs. Mon. 9:30-10:30, Wed. 3:15-4:15

31

