LECTURE 2.
FUNCTIONS & TESTING

Introduction to Scientific Python, CME 193
Jan. 16, 2014

Download code from lectures section of;
web.stanford.edu/~ermartin/Teaching/CME193-Winter1l5

Eileen Martin

- e
Feedback

- Course evaluations only help future classes

- If you want something changed, say so!
- Talk to me
- Email
- Anonymous online survey:
https://www.surveymonkey.com/s/NSVJDDJ

Overview

- Functions

- Scope

- Unit testing

- Q&A on homework 1

A named set of actions that returns a value
Multiple names could be assigned to the same function

May have some arguments/parameters as inputs
Arguments are called by some value that is an object reference

If there is no return statement, the returned type is NoneType
A nice way to:

Reuse code that you want to use multiple times
Organize your code

It creates a new local symbol table holding a set of
variables specific to the function, but can also reference
global variables

Anatomy of a function

start of definition ~ function name arguments docstring

\ / / (documentation string)

def repeat(n st)
"Return string st repeated n times™
nstr = n * st
return

return nstr - staternent
repNum = 3 (output)
repStr = “Argument”
print(repeat. doc)«
repeatedStr = repeat(repNum,repStr)
print(repeatedStr)

printing
documentation

function call

I
Organizing functions in separate files

- A function can be called by a script in another file as long as
that script knows it can access the functions in that file.

- This is done by importing the function from the module
named after that file

rep.py runRepeat.py
def repeat(n, st): import rep
"Return string st
repeated n times™ repNum = 3
nstr = n * st repStr = "Argument"
return nstr # get description of repeat
print(rep.repeat. doc)
def getFirst(st): # use repeat and print the result
"Return 1st repStr = rep.repeat(repNum,repStr)
character of string st | print(repStr)
first = st[0] # use getFirst and print the result
return first print(rep.getFirst(repStr))

Different ways to import functions

rep.py Three versions of runRepeat.py
def repeat(n, st): import rep

nstr = n * st repNum = 3

return nstr repStr = "Argument"

repStr = rep.repeat(repNum,repStr)

def getFirst(st): chi;ﬁp print(repStr)

first = st[0] MOdUI® | hrint (rep.getFirst(repStr))

return first from rep import repeat, getFirst

repNum = 3
repStr = "Argument"
individual | repStr = repeat(repNum,repStr)
functions in | print (repStr)
rep.py | print(getFirst(repStr))

from rep import *
repNum = 3
repStr = "Argument"
every | repStr = repeat(repNum,repStr)
functionin print(repStr)
rep.py | print(getFirst(repStr))

Overview

- Functions

- Scope

- Unit testing

- Q&A on homework 1

Scope: Where do the values come from?

A function creates a new local symbol table holding a set of
variables specific to the function, but can also reference

global variables.

How Python finds values of variables when executing some
function bet ():

3rd: built-in names

2nd: global names (from main script)

1st: names from bet ()

I
Scope

¢ Val’lableS deﬁned in a def bet(p, winnings, COSt) :

function are only accessible, "Decide whether to make bet
in that function. with some cost and probability
p of some winnings™
expectation = p * winnings
choice = False
if expectation > cost:
choice = True
return choice

- Try running scope1.py:

- What is the output of each

print statement to the right? win = 100

prob = 0.2

choice = True

toBetOrNot = bet(prob,win,25)
print(toBetOrNot)
print(choice)

Global variables can be
referenced from a function

If a global variable is

modified in a function:
Added to local symbol table
The global value isn’t modified

Where does globalVariable
value come from in both
print statements?

def bet(p, winnings, cost):

expectation = p * winnings

print(globalVariable)

choice = False

if expectation > cost:
choice = True

return choice

win = 100

prob = 0.2

choice = True

globalVariable = True
toBetOrNot = bet(prob,win,25)
print(toBetOrNot)
print(choice)
print(globalVariable)

Global variables can be
referenced from a function

If a global variable is

modified in a function:
Added to local symbol table
The global value isn’t modified

Why does this produce an
error? Compare to

previous two examples.

def bet(p, winnings, cost):

expectation =
print(choice)
choice = False
if expectation > cost:

choice = True
return choice

Pp * winnings

win = 100
prob = 0.2
choice = True
globatVariagbte=True
toBetOrNot = bet(prob,win,25)
print(toBetOrNot)
print(choice)

. clobalVariable

Scope: when one function calls another
and they're defined at same level

- If function bet () called expValue () defined at the same
level, there would be a new symbol table for expValue () .

- How Python finds values when executing expValue ():

3rd: built-in names

2nd: global names (from main script)

1st: names from expValue ()

T
SCOpe example: def bet(p, winnings, cost):

"Decide whether to make bet with

! some cost and probability p of some
2 functions B
at same Ievel someGlobalVar = ‘other test string’

expectation = expValue(p, winnings)
choice = False
if expectation > cost:

- Try this code in choice = True
return choice
scope2.py.

def expValue(p, winnings):
_ "Expected value of bet with
- What is the output of probability p of some winnings™

each print statement? print(someGlobalVar)
return p*winnings

win = 100
prob = 0.2
someGlobalVar = ‘some test string’

toBetOrNot = bet(prob,win,25)
print(toBetOrNot, someGlobalVar)

Scope: when one function is defined

Inside another

If function bet () called expValue () which were defined
inside of bet (), there would be a new symbol table for
expValue (), but it could reference values from bet () .

How Python finds values when executing expValue():

4t built-in names

3rd: global names (from main script)

2nd: names from bet ()
15t names from expValue ()

e
SCOpe example: def bet(p, winnings, cost):

Decide whether to make bet with

FunCt|On IN A some cost and probability p of some
. winnings"
funCt|On def expValue(p, winnings):

Expected value of bet with
probability p of some winnings"

- Try this code In

print(someGlobalVar)
scope3.py: return p*winnings
someGlobalVar = ‘other test string’
expectation = expValue(p, winnings)
. Compare to choice = False

if expectation > cost:
choice = True
return choice

previous example.

- Note: Can't call win = 100
expValue() from | prob = 0.2 |
main SCFipt someGlobalVar = ‘some test string

toBetOrNot = bet(prob,win,25)
print(toBetOrNot, someGlobalVar)

Overview

- Functions

- Scope

- Unit testing

- Q&A on homework 1

What is unit testing?

- Unit testing means running some checks that certain parts
of your code work.

- Unit tests should:
- each answer one specific question
- be reproducible/repeatable
- be easy to run quickly

- Simplest form is to run a bunch of scripts

I
Example: testing bet() and expValue()

- The function definitions below are in a script called betting.py
- How would you propose testing various parts of this code?

def bet(p, winnings, cost):
expectation = expValue(p,winnings)
choice = False
if expectation > cost:
choice = True
return choice

def expValue(p, winnings):
return p*winnings

I
Example: testing bet() and expValue()

- One way: run a series of simple scripts

- Here’s an example of a couple tests you might want to run (you
might want a more thorough testing environment):

from betting import *

passed = 0
fail = 0
if expValue(0.1,100) !'= 10:
fail += 1
print(‘expValue not returning correct expectation’)
else:

passed += 1
if bet(0.1,100,11):

fail += 1
print(‘Decision process may be flawed’)
else:

passed += 1
print(‘Passed ‘+str(passed)+’ tests of ‘+str(passed+fail))

Basic organization with unittest

- As you create a more thorough set of tests, you should have tests

organized as functions. This can be done with TestCase in the
unittest module.

 Try this:

from betting import *
import unittest

class bettingTests(unittest.TestCase):
def testPositiveCheck(self):

‘’’check exp. value for positive prob. and winnings’’’

self.assertAlmostEqual (expValue(0.1,100),10.0)

def testNegativeCheck(self):
“?’check exp. value for prob > 0, winnings < 0’’’
self.assertAlmostEqual (expValue(0.1,-1.5),-0.15)

def SimpleCheck(self): # doesn't follow name convention
‘?’check that you don’t bet when cost is too big’’’
self.assertEqual (False, bet(0.1,100,11))

if __name_ == °_ main__ ’:

run all the unit tests defined in this file

with names that start with test
unittest.main()

Further organization with unittest

What if you have multiple tests for the same subset of code, or the
same type of potential issue?

What if you only want some subset of your tests to be run?

The unittest module in the Python Standard Library provides a
nice framework for doing this

Test cases are individual tests to run

Multiple test cases that are similar may be grouped into a class
Test suites may contain several test cases

Test runners may run multiple test suites

Define a class
with two tests

Define a class
with one test

Create a suite
including 2 of 3
tests above

Create a runner
and run and give

feedback on
bettingSuite()

from betting import *
import unittest

class expectation(unittest.TestCase):
def positiveCheck(self):

self.assertAlmostEqual (expValue(0.1,100),10.0)
def negativeCheck(self):

self.assertAlmostEqual (expValue(0.1,-1.5),-0.15)

class decision(unittest.TestCase):
def simpleCheck(self):

self.assertEqual(False, bet(0.1,100,11))

def bettingSuite():
bettingSuite = unittest.TestSuite()
bettingSuite.addTest (expectation(‘positiveCheck’))
bettingSuite.addTest (decision(‘simpleCheck’))
return bettingSuite

if _name_ == ° main__ ’:
runner = unittest.TextTestRunner ()
runner.run(bettingSuite())

Additional features in unittest

- You may need to do some set up at the start of many tests
- Override the setUp() method

- You may also need to dispose of some objects or data
- Override the tearDown() method

from betting import *
import unittest

class expectation(unittest.TestCase):
def setUp(self):
self.p = 0.1
def positiveCheck(self):
self.assertAlmostEqual (expValue(self.p,100),10.0)
def negativeCheck(self):
self.assertAlmostEqual (expValue(self.p,-1.5),-0.15)

if __name_ == °_ main__ ’:
unittest.main()

Overview

- Functions

- Scope

- Unit testing

- Q&A on homework 1

First assignment

Questions about first assignment?

Solutions will be posted on CourseWork. Please do not share
solutions with people who will take the course in the future.

Suggestions for types of problems you'd like to see in future
assignments?

Research-inspired problems
Problems to explore additional topics

