
LECTURE 2:
FUNCTIONS & TESTING
Introduction to Scientific Python, CME 193
Jan. 16, 2014
Download code from lectures section of:
web.stanford.edu/~ermartin/Teaching/CME193-Winter15

Eileen Martin

1

Feedback
• Course evaluations only help future classes
•  If you want something changed, say so!

•  Talk to me
•  Email
•  Anonymous online survey:

 https://www.surveymonkey.com/s/NSVJDDJ

2

Overview
•  Functions
• Scope
• Unit testing
• Q&A on homework 1

3

What is a function? Why use it?
• A named set of actions that returns a value

•  Multiple names could be assigned to the same function
•  May have some arguments/parameters as inputs

•  Arguments are called by some value that is an object reference
•  If there is no return statement, the returned type is NoneType

• A nice way to:
•  Reuse code that you want to use multiple times
•  Organize your code

•  It creates a new local symbol table holding a set of
variables specific to the function, but can also reference
global variables

4

Anatomy of a function

def repeat(n, st):
 '''Return string st repeated n times'''
 nstr = n * st
 return nstr

repNum = 3
repStr = “Argument”
print(repeat.__doc__)
repeatedStr = repeat(repNum,repStr)
print(repeatedStr)

5

start of definition function name arguments docstring
(documentation string)

return
statement
(output)

function call

printing
documentation

Organizing functions in separate files
• A function can be called by a script in another file as long as

that script knows it can access the functions in that file.
•  This is done by importing the function from the module

named after that file

6

def repeat(n, st):
 ''’Return string st
repeated n times'''
 nstr = n * st
 return nstr

def getFirst(st):
 ''’Return 1st
character of string st'''
 first = st[0]
 return first

rep.py
import rep

repNum = 3
repStr = "Argument"
get description of repeat
print(rep.repeat.__doc__)
use repeat and print the result
repStr = rep.repeat(repNum,repStr)
print(repStr)
use getFirst and print the result
print(rep.getFirst(repStr))

runRepeat.py

Different ways to import functions
7

def repeat(n, st):
 nstr = n * st
 return nstr

def getFirst(st):
 first = st[0]
 return first

rep.py
import rep
repNum = 3
repStr = "Argument"
repStr = rep.repeat(repNum,repStr)
print(repStr)
print(rep.getFirst(repStr))

Three versions of runRepeat.py

from rep import *
repNum = 3
repStr = "Argument"
repStr = repeat(repNum,repStr)
print(repStr)
print(getFirst(repStr))

from rep import repeat, getFirst
repNum = 3
repStr = "Argument"
repStr = repeat(repNum,repStr)
print(repStr)
print(getFirst(repStr))

every
function in

rep.py

individual
functions in

rep.py

all of rep
module

Overview
•  Functions
• Scope
• Unit testing
• Q&A on homework 1

8

Scope: Where do the values come from?
• A function creates a new local symbol table holding a set of

variables specific to the function, but can also reference
global variables.

• How Python finds values of variables when executing some
function bet():

9

3rd: built-in names

2nd: global names (from main script)

1st: names from bet()

Scope
10

def bet(p, winnings, cost):
 '''Decide whether to make bet
with some cost and probability
p of some winnings'''
 expectation = p * winnings
 choice = False
 if expectation > cost:
 choice = True
 return choice

win = 100
prob = 0.2
choice = True
toBetOrNot = bet(prob,win,25)
print(toBetOrNot)
print(choice)

• Variables defined in a
function are only accessible
in that function.

•  Try running scope1.py:

• What is the output of each
print statement to the right?

Scope
11

def bet(p, winnings, cost):
 '''Decide whether to make bet
with some cost and probability
p of some winnings'''
 expectation = p * winnings
 print(globalVariable)
 choice = False
 if expectation > cost:
 choice = True
 return choice

win = 100
prob = 0.2
choice = True
globalVariable = True
toBetOrNot = bet(prob,win,25)
print(toBetOrNot)
print(choice)
print(globalVariable)

• Global variables can be
referenced from a function

•  If a global variable is

modified in a function:
•  Added to local symbol table
•  The global value isn’t modified

• Modify scope1.py:

• Where does globalVariable
value come from in both
print statements?

Scope
12

def bet(p, winnings, cost):
 '''Decide whether to make bet
with some cost and probability
p of some winnings'''
 expectation = p * winnings
 print(choice)
 choice = False
 if expectation > cost:
 choice = True
 return choice

win = 100
prob = 0.2
choice = True
globalVariable = True
toBetOrNot = bet(prob,win,25)
print(toBetOrNot)
print(choice)
print(globalVariable)

• Global variables can be
referenced from a function

•  If a global variable is
modified in a function:
•  Added to local symbol table
•  The global value isn’t modified

• Modify scope1.py:

• Why does this produce an
error? Compare to
previous two examples.

Scope: when one function calls another
and they’re defined at same level
•  If function bet() called expValue() defined at the same

level, there would be a new symbol table for expValue().

• How Python finds values when executing expValue():

13

3rd: built-in names

2nd: global names (from main script)

1st: names from expValue()

Scope example:
2 functions
at same level

14

def bet(p, winnings, cost):
 '''Decide whether to make bet with
some cost and probability p of some
winnings''’
 someGlobalVar = ‘other test string’
 expectation = expValue(p, winnings)
 choice = False
 if expectation > cost:
 choice = True
 return choice

def expValue(p, winnings):
 '''Expected value of bet with
probability p of some winnings'''
 print(someGlobalVar)
 return p*winnings

win = 100
prob = 0.2
someGlobalVar = ‘some test string’
toBetOrNot = bet(prob,win,25)
print(toBetOrNot, someGlobalVar)

•  Try this code in
scope2.py:

• What is the output of

each print statement?

Scope: when one function is defined
inside another
•  If function bet() called expValue() which were defined

inside of bet(), there would be a new symbol table for
expValue(), but it could reference values from bet().

• How Python finds values when executing expValue():

15

4th: built-in names

3rd: global names (from main script)

2nd: names from bet()

1st: names from expValue()

Scope example:
Function in a
function

16

def bet(p, winnings, cost):
 '''Decide whether to make bet with
some cost and probability p of some
winnings'’’
 def expValue(p, winnings):
 '''Expected value of bet with
probability p of some winnings''’
 print(someGlobalVar)
 return p*winnings
 someGlobalVar = ‘other test string’
 expectation = expValue(p, winnings)
 choice = False
 if expectation > cost:
 choice = True
 return choice

win = 100
prob = 0.2
someGlobalVar = ‘some test string’
toBetOrNot = bet(prob,win,25)
print(toBetOrNot, someGlobalVar)

•  Try this code in
scope3.py:

• Compare to

previous example.

• Note: Can’t call
expValue() from
main script

Overview
•  Functions
• Scope
• Unit testing
• Q&A on homework 1

17

What is unit testing?
• Unit testing means running some checks that certain parts

of your code work.
• Unit tests should:

•  each answer one specific question
•  be reproducible/repeatable
•  be easy to run quickly

• Simplest form is to run a bunch of scripts

18

Example: testing bet() and expValue()
•  The function definitions below are in a script called betting.py
•  How would you propose testing various parts of this code?

19

def bet(p, winnings, cost):
 expectation = expValue(p,winnings)
 choice = False
 if expectation > cost:
 choice = True
 return choice

def expValue(p, winnings):
 return p*winnings

Example: testing bet() and expValue()
•  One way: run a series of simple scripts
•  Here’s an example of a couple tests you might want to run (you

might want a more thorough testing environment):

20

from betting import *

passed = 0
fail = 0
if expValue(0.1,100) != 10:
 fail += 1
 print(‘expValue not returning correct expectation’)
else:
 passed += 1
if bet(0.1,100,11):
 fail += 1
 print(‘Decision process may be flawed’)
else:
 passed += 1
print(‘Passed ‘+str(passed)+’ tests of ‘+str(passed+fail))

Basic organization with unittest
•  As you create a more thorough set of tests, you should have tests

organized as functions. This can be done with TestCase in the
unittest module.

•  Try this:

21

from betting import *
import unittest

class bettingTests(unittest.TestCase):
 def testPositiveCheck(self):
 ‘’’check exp. value for positive prob. and winnings’’’
 self.assertAlmostEqual(expValue(0.1,100),10.0)
 def testNegativeCheck(self):
 ‘’’check exp. value for prob > 0, winnings < 0’’’
 self.assertAlmostEqual(expValue(0.1,-1.5),-0.15)
 def SimpleCheck(self): # doesn’t follow name convention
 ‘’’check that you don’t bet when cost is too big’’’
 self.assertEqual(False, bet(0.1,100,11))

if __name__ == ‘__main__’:
 # run all the unit tests defined in this file
 # with names that start with test
 unittest.main()

Further organization with unittest
•  What if you have multiple tests for the same subset of code, or the

same type of potential issue?

•  What if you only want some subset of your tests to be run?

•  The unittest module in the Python Standard Library provides a

nice framework for doing this
•  Test cases are individual tests to run
•  Multiple test cases that are similar may be grouped into a class
•  Test suites may contain several test cases
•  Test runners may run multiple test suites

22

23

from betting import *
import unittest

class expectation(unittest.TestCase):
 def positiveCheck(self):
 ‘’’check exp. value for positive prob. and winnings’’’
 self.assertAlmostEqual(expValue(0.1,100),10.0)
 def negativeCheck(self):
 ‘’’check exp. value for prob > 0, winnings < 0’’’
 self.assertAlmostEqual(expValue(0.1,-1.5),-0.15)

class decision(unittest.TestCase):
 def simpleCheck(self):
 ‘’’check that you don’t bet when cost is too big’’’
 self.assertEqual(False, bet(0.1,100,11))

def bettingSuite():
 bettingSuite = unittest.TestSuite()
 bettingSuite.addTest(expectation(‘positiveCheck’))
 bettingSuite.addTest(decision(‘simpleCheck’))
 return bettingSuite

if __name__ == ‘__main__’:
 runner = unittest.TextTestRunner()
 runner.run(bettingSuite())

Create a runner
and run and give
feedback on
bettingSuite()

Create a suite
including 2 of 3
tests above

Define a class
with one test

Define a class
with two tests

unittest example:

Additional features in unittest
• You may need to do some set up at the start of many tests

•  Override the setUp() method

• You may also need to dispose of some objects or data
•  Override the tearDown() method

24

from betting import *
import unittest

class expectation(unittest.TestCase):
 def setUp(self):
 self.p = 0.1
 def positiveCheck(self):
 self.assertAlmostEqual(expValue(self.p,100),10.0)
 def negativeCheck(self):
 self.assertAlmostEqual(expValue(self.p,-1.5),-0.15)

if __name__ == ‘__main__’:
 unittest.main()

Overview
•  Functions
• Scope
• Unit testing
• Q&A on homework 1

25

First assignment
•  Questions about first assignment?

•  Solutions will be posted on CourseWork. Please do not share

solutions with people who will take the course in the future.

•  Suggestions for types of problems you’d like to see in future
assignments?
•  Research-inspired problems
•  Problems to explore additional topics

26

