
LECTURE 4:
OBJECT-ORIENTED
PROGRAMMING,
MAGIC METHODS

Introduction to Scientific Python, CME 193
Jan. 30, 2014
Download exercises from:
web.stanford.edu/~ermartin/Teaching/CME193-Winter15/lectures.html

Eileen Martin

1

Feedback Reminder
• Course evaluations only help future classes
•  If you want something changed, say so!

•  Talk to me
•  Email
•  Anonymous online survey:

 https://www.surveymonkey.com/s/NSVJDDJ

2

•  Introduction to classes, objects
• Magic methods
• More realistic example
•  Looking at the unittest module
•  Inheritance
• Discussing assignment 3

3

Overview Today

4

Classes
• Python has a few useful data structures that each have

some methods defined for them (e.g. appending to a list)
• Classes are the way we can define our own data

structures
• Each instance of a class is an object
• Classes have attributes that are described as:

•  data (values associated with that class)
•  methods (functions that objects of that class can access)

• Example: student class for a course scheduling program
•  What data should each student have?
•  What methods should each student have?

5

Open myClass.py and test_myClass.py
class emptyClass:

 '''Defines a class that has no attributes'''
 pass

from myClass import emptyClass

instantiate an object of type emptyClass
someObject = emptyClass()

get information about emptyClass
print(emptyClass.__doc__) # get information directly
from class
print(someObject.__doc__) # get information from
object

look at this instantiation of an emptyClass object
print(someObject)

emptyClass
definition

instantiating
an
emptyClass
object

•  Introduction to classes, objects
• Magic methods
• More realistic example
•  Looking at the unittest module
•  Inheritance
• Discussing assignment 3

6

Overview Today

• Magic methods may have default behaviors, but can be
overridden in your classes

• A few examples we’ve seen:
 __init__
 __str__
 __add__ (example ‘mystring’+’another’)
 __float__ (example float(True))

7

Magic methods

More info: http://www.rafekettler.com/magicmethods.html

8

More magic methods examples:

More info: http://www.rafekettler.com/magicmethods.html

__add__ __sub__ __mul__ __div__
add a+b subtract a-b multiply a*b divide a/b
__radd__ __rsub__ __ror__ __rand__
add b+a
(reverse order)

subtract b-a
(reverse order)

b | a
(reverse order)

b & a
(reverse order)

__iadd__ __xor__ __or__ __and__
add to self a += b a ^ b

(exclusive or)
a | b a & b

__int__ __str__ __nonzero__ __getitem__
typecast to integer
int(a)

represent as string
str(a)

defines boolean
type cast bool(a)

returns value at
a[key]

__contains__ __iter__ and next __cmp__ __del__
x in a allows iteration

over object
compares/orders
objects

destructor (destroy
the object)

9

Open myClass2.py and test_myClass2.py
class emptyClass2:

 '''Defines a class that has no attributes'''
 pass
 def __str__(self):
 return “I am an empty object”

from myClass2 import emptyClass2

instantiate an object of type emptyClass2
someObject = emptyClass2()

look at this instantiation of an emptyClass2 object
print(someObject)

emptyClass2
definition

now you should get more than an address from print()

•  Introduction to classes, objects
• Magic methods
• More realistic example
•  Looking at the unittest module
•  Inheritance
• Discussing assignment 3

10

Overview Today

• We can define the instantiation (initialization) of a class
with __init__ (there can only be one init for a class)

•  The parameter self is used to refer to the object itself
 self.inventory = someDictionary

•  This example has methods that:
•  modify the object but don’t return anything
•  have a return value

• Users of a class can modify attributed in the class’s
methods or in any outside script

11

Features in this example

12

Open warehouseClass.py and
test_warehouse.py

class warehouse:
 '''This class describes a warehouse with some inventory dictionary with

item:number pairs, location, and a set of employees'’’
 n_warehouses = 0 # shared class variable
 def __init__(self, inventory, location, employees):
 self.inventory = inventory # Personal variables for just
 self.location = location # one instance of class
 self.employees = employees
 warehouse.n_warehouses += 1 # Any warehouse can modify this

 def __str__(self):
 …

 def hire(self, employee):
 …

 def fire(self, employee):
 …

 def newItem(self, item, number=1):
 …

 def soldItem(self, item, number=1):
 …

 def numItems(self):
 …

•  Introduction to classes, objects
• Magic methods
• More realistic example
•  Looking at the unittest module
•  Inheritance
• Discussing assignment 3

13

Overview Today

14

Open betTest2.py
What is happening when we use this
module?

from betting import *
import unittest

class expectation(unittest.TestCase):
 def positiveCheck(self):
 '''check exp. value for positive prob. and winnings'''
 self.assertAlmostEqual(expValue(0.1,100),-10.0,11)
 def negativeCheck(self):
 '''check exp. value for prob > 0, winnings < 0'''
 self.assertAlmostEqual(expValue(0.1,-1.5),-0.15)

……more on next few slides…

15

Open betTest2.py

from betting import *
import unittest

class expectation(unittest.TestCase):
 def positiveCheck(self):
 '''check exp. value for positive prob. and winnings'''
 self.assertAlmostEqual(expValue(0.1,100),10.0,11)
 def negativeCheck(self):
 '''check exp. value for prob > 0, winnings < 0'''
 self.assertAlmostEqual(expValue(0.1,-1.5),-0.15)

This first chunk:
•  imports the unittest module (which has the TestCase class defined in it)
•  defines the class expectation which inherits from unittest.TestCase
•  defines two methods positiveCheck and negativeCheck that are

specific to the expectation class
•  and each of those methods calls the method assertAlmostEqual, which is

inherited from TestCase

16

Open betTest2.py

class decision(unittest.TestCase):
 def simpleCheck(self):
 '''check that you don't bet when cost is too big'''
 self.assertEqual(False, bet(0.1,100,11))

This next class:

•  defines the class decision which inherits from unittest.TestCase

•  defines 1 method simpleCheck that’s specific to the expectation class

•  and that method calls the method assertEqual, which is inherited from

TestCase

17

Open betTest2.py

def bettingSuiteFct():
 bettingSuite = unittest.TestSuite()
 bettingSuite.addTest(expectation('positiveCheck'))
 bettingSuite.addTest(expectation('negativeCheck'))
 bettingSuite.addTest(decision('simpleCheck'))
 return bettingSuite

This next chunk:

•  defines the function bettingSuiteFct
•  that function instantiates a TestSuite object called bettingSuite
•  TestSuite’s method addTest is called on callable functions in classes
•  expectation and decision inherited the __call__ method for

their newly-defined methods from TestCase
•  a TestSuite object is returned which can run three tests

18

Open betTest2.py

if __name__ == '__main__':
 runner = unittest.TextTestRunner()
 runner.run(bettingSuiteFct())

This last chunk:

•  Checks that we’re in the main script

•  Creates an instance of a TextTestRunner object called runner

•  Call’s the TextTestRunner class’ method run which takes an
argument that is the TestSuite object returned by the function
bettingSuiteFct()

•  Introduction to classes, objects
• Magic methods
• More realistic example
•  Looking at the unittest module
•  Inheritance
• Discussing assignment 3

19

Overview Today

20

Inheritance
•  What if you want to create a general class, and define

more specific sub-classes?

•  Python allows classes to inherit from a parent class:

•  Get default attributes from parent class
•  Can override methods in parent class of the same name
•  Can define new methods that the parent class didn’t have

21

Inheritance example
•  A graph is a set of vertices and set of edges (tuples)
•  A complete graph is a graph which has an edge between every pair of

vertices
•  Open graphClass.py and test_graph.py

•  graph is parent class, completeGraph inherits from graph

0

1

2 3

4

0

1

2 3

4
an example of a graph an example of a complete graph,

which is also a graph

•  Introduction to classes, objects
• Magic methods
• More realistic example
•  Looking at the unittest module
•  Inheritance
• Discussing assignment 3

22

Overview Today

Assignment 3
• Difficult questions, general questions?
• Assignment 4 posted on the course website:

http://stanford.edu/~ermartin/Teaching/CME193-Winter15/assignments.html

23

