LECTURE 7:
STUDENT REQUESTED TOPICS

Introduction to Scientific Python, CME 193
Feb. 20, 2014

Please download today’s exercises from:
web.stanford.edu/~ermartin/Teaching/CME193-Winter1l5

Eileen Martin

Overview Today

- Writing scripts that interact with the operating system
- Multithreading

- PCA & applications
- Discussion of this week’s assignment

Scripts to interact with the computer

Three very useful modules for this are:

(01
A variety of operating system interfaces

shutil
File and directory handling

Sys
System specific parameters/functions

Examples:
Create a directory, copy a few files from another directory (os, shutil)

Rename a directory (0s)

Add paths to look for modules, check the type of computer, avoid asking recursive
programs to go too far, or get user input at the beginning of a program (sys)

Example scripts

Create a directory, copy a few files from another directory
(os,shutil)

Rename a directory (0s)

Add paths to look for modules, check the type of
computer, avoid asking recursive programs to go too far,
or get user input at the beginning of a program (sys)

Exercise:

Work in small groups to modify the code in copyFile.py so that if you
typed this in the command line:

python copyFile.py 4
your code would create 4 copies of startTestDir named:
copyDirl
copyDir2
copyDir3
copyDird
that each contain test filel.txt and test file2.txt

Shell scripts, unix commands

You can also make shell scripts (like bash)
Start with #!/usr/bin/env python

Or use the subprocess module

Example: (Hit i to start typing, then esc : wq to save+quit)

You can submit jobs to clusters using Python scripts

Overview Today

- Writing scripts that interact with the operating system
- Multithreading

- PCA & applications
- Discussion of this week’s assignment

Multiprocessing vs multithreading

Multiprocessing allows us to split up a
procedure amongst multiple processes

Each process uses different memory space

Don’t need to worry about synchronization or
race conditions as much so code is more
straightforward than multithreading

Can take advantage of multiple CPUs

As opposed to the multithreading
module, which runs multiple threads
Threads share memory space
Easier to share variables between threads

Quicker to start up threads (lower memory
overhead too) than processes

thread 1

CPU 1

CPU 2

thread 2

thread 1
thread 2
thread 3
thread 4

CPU 1

CPU 2

thread 3
CPU 3

CPU 4
thread 4

CPU 3

CPU 4

The multiprocessing module’s pools

Create a Pool object with some number of processes
P = multiprocessing.Pool(processes = 4)

Use the Pool’s methods to apply a function

The method may block computation from continuing until
the function application is completed, or be asynchronous

The method may subdivide the input (map) or not (apply)

Ways to apply a function

p.apply(f[,args[,keywords]])

result

p.apply _async(f[,args

[,keywords[,callback]]])

answer

result.get()

p.map(f,iterable[, chunksize])

result

p.map_async(f,

iterable[,chunksizel,
callback]])

answer

result.get()

Applies function f in separate process
Only one process in the pool runs f(args,keywords)
Blocks until result is read

Like apply, but returns a result

Can apply callback to it as soon as the result is ready
apply_async() better suited to parallel than apply()
Must call get() method on ApplyResult object (blocks)

Breaks iterable into chunks, each thread gets chunk
Blocks program from continuing until this is complete
Applies f to each element of the iterable

Breaks iterable in chunks & each thread gets a chunk
Applies callback or moves on through the code
Must call get() method on MapResult object(blocks)

Example of using a Pool

The is_prime() function from assignment 2 was pretty slow, so
we want to speed up checking each int in a long list.

Because each prime check is independent, we can split up the
list into chunks and each chunk gets all its entries checked.

Open up and run and

Checks if each entry of [0, 1, ..., 99999] is prime, then checks if each
entry of [100000,100001,...,199999] is prime

This is done in three ways and the times are compared:
Serial (one process)

Uses map, which blocks (as many processes as CPUs)
Uses map_async, which doesn’t block (as many processes as CPUs)

More examples and details on using multiprocessing:

Overview Today

- Writing scripts that interact with the operating system
- Multithreading

- PCA & applications
- Discussion of this week’s assignment

Principal component analysis (PCA)

Finds most important directions
that explain a dataset

1st vector is less dependent on
your choice of coordinate system
than least-squares

Steps, D data matrix: .\/
get covariance matrix D*D

get eigenvalues & eigenvectors of D*D

keep e-vecs from largest e-vals in
rows of matrix E

transform data ED*

Image from wikimedia commons

Fisher’s Iris data set

- Can we distinguish between different
types of iris flowers based on a few
measurements?

- Example: irisPCA.txt
- Tab delimited text file irisData.txt

- 95 columns in this order:
- Sepal length (float)
- Sepal width (float)
- Petal length (float)
- Pedal width (float)
- Species (string)

Image from wikimedia commons

Want to do machine learning in Python?
Check out scikit-learn

Can download from scikit-learn.org
Built on top of NumPy, SciPy, matplotlib

Simple syntax and pre-tested functions
PCA can be called via sklearn.decomposition.PCA()

Has many preloaded datasets to test algorithms on

You can see an example of PCA with the Iris data in their
tutorials using 3 dimensions:

Overview Today

- Writing scripts that interact with the operating system
- Multithreading

- PCA & applications
- Discussion of this week’s assignment

Assignment 7

This lecture covered a few topics requested by students, but there
is a lot more functionality available in Python

For this week, try something you think is interesting to do with
Python and make a < 5 minute video about it. Possibilities:

Use some of the tools we’ve already discussed this quarter to solve a problem you’re
interested in

Explore a new module, show a few of its functions or data structures
Test whether multithreading speeds up some particular problem
Analyze and/or visualize some data set

Compare performance & code in Python to another language you know
Try out the map-reduce framework

Download a Python package that isn’t in the standard library and show a few simple
things you can do with it

Create a simple web-crawler
Learn how to do some exception handling so code doesn’t stop running due to errors

Assignment 7: Detalls

You will submit a text file with a to your video and your

On Mac it's easiest to do screenshot videos with Quicktime (make
sure the sound is on)

screenr.com lets you record up to 5 minute videos without
downloading any software

Some options for your video:
Youtube (public, unlisted, or private)

Vimeo (anyone, only people with a password- you provide instructors with the
password)

If you are okay with these being shared, choose your level:
public — video link on course website can be viewed by anyone

class only- video link posted on a password protected part of the course
website

private (default)- only instructors can view video, no link will be posted
anywhere on the course website

