
LECTURE 7:
STUDENT REQUESTED TOPICS
Introduction to Scientific Python, CME 193
Feb. 20, 2014
Please download today’s exercises from:
web.stanford.edu/~ermartin/Teaching/CME193-Winter15

Eileen Martin

1

• Writing scripts that interact with the operating system
• Multithreading
• PCA & applications
• Discussion of this week’s assignment

2

Overview Today

•  Three very useful modules for this are:
•  os

•  A variety of operating system interfaces
•  http://www.pythonforbeginners.com/os/pythons-os-module

•  shutil
•  File and directory handling
•  https://docs.python.org/2/library/shutil.html

•  sys
•  System specific parameters/functions
•  https://docs.python.org/2/library/sys.html

•  Examples:

•  Create a directory, copy a few files from another directory (os, shutil)
•  copyFile.py

•  Rename a directory (os)
•  renameFolder.py

•  Add paths to look for modules, check the type of computer, avoid asking recursive
programs to go too far, or get user input at the beginning of a program (sys)
•  get_sys_info.py

3

Scripts to interact with the computer

• Create a directory, copy a few files from another directory
(os,shutil)
•  copyFile.py

• Rename a directory (os)
•  renameFolder.py

• Add paths to look for modules, check the type of
computer, avoid asking recursive programs to go too far,
or get user input at the beginning of a program (sys)
•  get_sys_info.py

4

Example scripts

Work in small groups to modify the code in copyFile.py so that if you
typed this in the command line:

python copyFile.py 4
your code would create 4 copies of startTestDir named:

copyDir1
copyDir2
copyDir3
copyDir4

that each contain test_file1.txt and test_file2.txt

5

Exercise:

• You can also make shell scripts (like bash)
•  Start with #!/usr/bin/env python

• Or use the subprocess module
•  https://docs.python.org/2/library/subprocess.html
•  Example: openVI.py (Hit i to start typing, then esc : wq to save+quit)

• You can submit jobs to clusters using Python scripts
•  https://wiki.anl.gov/cnm/HPC/Submitting_and_Managing_Jobs/Example_Job_Script

6

Shell scripts, unix commands

• Writing scripts that interact with the operating system
• Multithreading
• PCA & applications
• Discussion of this week’s assignment

7

Overview Today

•  Multiprocessing allows us to split up a
procedure amongst multiple processes
•  Each process uses different memory space
•  Don’t need to worry about synchronization or

race conditions as much so code is more
straightforward than multithreading

•  Can take advantage of multiple CPUs

•  As opposed to the multithreading
module, which runs multiple threads
•  Threads share memory space
•  Easier to share variables between threads
•  Quicker to start up threads (lower memory

overhead too) than processes

8

Multiprocessing vs multithreading

CPU 1 CPU 3

CPU 2 CPU 4

CPU 1 CPU 3

CPU 2 CPU 4

thread 1 thread 3

thread 2 thread 4

thread 1
thread 2
thread 3
thread 4

• Create a Pool object with some number of processes
p = multiprocessing.Pool(processes = 4)

• Use the Pool’s methods to apply a function

•  The method may block computation from continuing until
the function application is completed, or be asynchronous

•  The method may subdivide the input (map) or not (apply)

9

The multiprocessing module’s pools

10

Ways to apply a function
method to apply description
p.apply(f[,args[,keywords]]) •  Applies function f in separate process

•  Only one process in the pool runs f(args,keywords)
•  Blocks until result is read

result = p.apply_async(f[,args
 [,keywords[,callback]]])

answer = result.get()

•  Like apply, but returns a result
•  Can apply callback to it as soon as the result is ready
•  apply_async() better suited to parallel than apply()
•  Must call get() method on ApplyResult object (blocks)

p.map(f,iterable[, chunksize]) •  Breaks iterable into chunks, each thread gets chunk
•  Blocks program from continuing until this is complete
•  Applies f to each element of the iterable

result = p.map_async(f,
iterable[,chunksize[,
callback]])

answer = result.get()

•  Breaks iterable in chunks & each thread gets a chunk
•  Applies callback or moves on through the code
•  Must call get() method on MapResult object(blocks)

•  The is_prime() function from assignment 2 was pretty slow, so
we want to speed up checking each int in a long list.

•  Because each prime check is independent, we can split up the

list into chunks and each chunk gets all its entries checked.

•  Open up and run prime.py and primeMultiproc.py

•  Checks if each entry of [0, 1, …, 99999] is prime, then checks if each
entry of [100000,100001,…,199999] is prime

•  This is done in three ways and the times are compared:
•  Serial (one process)
•  Uses map, which blocks (as many processes as CPUs)
•  Uses map_async, which doesn’t block (as many processes as CPUs)

•  More examples and details on using multiprocessing:
http://pymotw.com/2/multiprocessing/basics.html

11

Example of using a Pool

• Writing scripts that interact with the operating system
• Multithreading
• PCA & applications
• Discussion of this week’s assignment

12

Overview Today

•  Finds most important directions
that explain a dataset

•  1st vector is less dependent on
your choice of coordinate system
than least-squares

• Steps, D data matrix:
•  get covariance matrix D*D
•  get eigenvalues & eigenvectors of D*D
•  keep e-vecs from largest e-vals in

rows of matrix E
•  transform data ED*

13

Principal component analysis (PCA)

Image from wikimedia commons

• Can we distinguish between different
types of iris flowers based on a few
measurements?

• Example: irisPCA.txt
•  Tab delimited text file irisData.txt
•  5 columns in this order:

•  Sepal length (float)
•  Sepal width (float)
•  Petal length (float)
•  Pedal width (float)
•  Species (string)

14

Fisher’s Iris data set

Image from wikimedia commons

• Can download from scikit-learn.org
• Built on top of NumPy, SciPy, matplotlib
• Simple syntax and pre-tested functions

•  PCA can be called via sklearn.decomposition.PCA()

• Has many preloaded datasets to test algorithms on
• You can see an example of PCA with the Iris data in their

tutorials using 3 dimensions:
•  http://scikit-learn.org/stable/auto_examples/decomposition/

plot_pca_iris.html

15

Want to do machine learning in Python?
Check out scikit-learn

• Writing scripts that interact with the operating system
• Multithreading
• PCA & applications
• Discussion of this week’s assignment

16

Overview Today

Assignment 7
•  This lecture covered a few topics requested by students, but there

is a lot more functionality available in Python

•  For this week, try something you think is interesting to do with

Python and make a < 5 minute video about it. Possibilities:
•  Use some of the tools we’ve already discussed this quarter to solve a problem you’re

interested in
•  Explore a new module, show a few of its functions or data structures
•  Test whether multithreading speeds up some particular problem
•  Analyze and/or visualize some data set
•  Compare performance & code in Python to another language you know
•  Try out the map-reduce framework
•  Download a Python package that isn’t in the standard library and show a few simple

things you can do with it
•  Create a simple web-crawler
•  Learn how to do some exception handling so code doesn’t stop running due to errors

17

Assignment 7: Details
•  You will submit a text file with a link to your video and your sharing

preference

•  On Mac it’s easiest to do screenshot videos with Quicktime (make
sure the sound is on)

•  screenr.com lets you record up to 5 minute videos without
downloading any software

•  Some options for posting your video:
•  Youtube (public, unlisted, or private)
•  Vimeo (anyone, only people with a password- you provide instructors with the

password)

•  If you are okay with these being shared, choose your privacy level:
•  public – video link on course website can be viewed by anyone
•  class only- video link posted on a password protected part of the course

website
•  private (default)- only instructors can view video, no link will be posted

anywhere on the course website

18

